1
|
Cunha WR, Martin de la Vega M, Rodrigues de Barros P, Espinosa-Diez C. lncRNAs in vascular senescence and microvascular remodeling. Am J Physiol Heart Circ Physiol 2025; 328:H1238-H1252. [PMID: 40251747 DOI: 10.1152/ajpheart.00750.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of vascular senescence and microvascular remodeling, processes that significantly contribute to the development of age-related diseases in organs such as the kidneys, heart, and lungs. Through mechanisms like chromatin remodeling, transcriptional regulation, and posttranscriptional modifications, lncRNAs modulate gene expression, thereby influencing cellular processes such as apoptosis, inflammation, fibrosis, and angiogenesis. In chronic kidney disease, cardiovascular disease, and pulmonary disorders, lncRNAs play a central role in promoting vascular dysfunction, endothelial cell aging, and fibrosis. This review focuses on how lncRNAs contribute to endothelial dysfunction, fibrosis, and vascular aging, emphasizing their roles in disease progression within the kidneys, heart, and lungs, where lncRNA-mediated vascular changes play a significant role in disease progression. Understanding the interactions between lncRNAs, vascular senescence, and microvascular remodeling offers promising avenues for developing targeted therapeutic strategies to mitigate the impact of aging on vascular health.
Collapse
Affiliation(s)
- Warlley Rosa Cunha
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria Martin de la Vega
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Paula Rodrigues de Barros
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina Espinosa-Diez
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
2
|
Chellini L, Del Verme A, Riccioni V, Paronetto MP. YAP1 promoter-associated noncoding RNA affects Ewing sarcoma cell tumorigenicity by regulating YAP1 expression. Cell Mol Biol Lett 2025; 30:63. [PMID: 40414844 PMCID: PMC12103783 DOI: 10.1186/s11658-025-00736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Ewing sarcomas (ESs) are aggressive paediatric tumours of bone and soft tissues afflicting children and adolescents. Despite current therapies having improved the 5-year survival rate to 70% in patients with localized disease, 25% of patients relapse and most have metastasis at diagnosis. Resistance to chemotherapy, together with the high propensity to metastasize, remain the main causes of treatment failure. Thus, identifying novel targets for alternative therapeutic approaches is urgently needed. METHODS Biochemical and functional analyses were carried out to elucidate the mechanism of regulation of YAP1 expression by pncRNA_YAP1-1 in ES cells. RESULTS Here, we identified a novel promoter-associated noncoding RNA, pncRNA_YAP1-1, transcribed from the YAP1 promoter in ES cells. We found that pncRNA_YAP1-1 level exerts antitumour effects on ES by destabilizing YAP1 protein. The molecular mechanism relies on the interaction of pncRNA_YAP1-1 with the RNA binding protein FUS, which stabilizes the transcript. Furthermore, pncRNA_YAP1-1 binding to TEAD impairs its interaction with YAP1, thus determining YAP1 translocation into the cytoplasm, its phosphorylation and degradation. CONCLUSIONS Overall, our findings reveal a novel layer of regulation of YAP1 protein expression by pncRNA_YAP1-1 in Ewing sarcoma. Considering the role of YAP1 in therapy response and cell propensity to metastasize, our results indicate pncRNA_YAP1-1 as an actionable target that could be exploited to enhance chemotherapy efficacy in Ewing sarcoma. SIGNIFICANCE PncRNA_YAP1-1 counteracts the YAP1 oncogenic transcriptional program in Ewing sarcoma cells by interfering with YAP1-TEAD interaction and impairing YAP1 protein stability. These findings uncover a novel treatment option for Ewing sarcoma.
Collapse
MESH Headings
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/metabolism
- Humans
- YAP-Signaling Proteins
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Promoter Regions, Genetic/genetics
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/pathology
- RNA-Binding Protein FUS/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/pathology
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Arianna Del Verme
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Veronica Riccioni
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
3
|
Mangoni D, Mazzetti A, Ansaloni F, Simi A, Tartaglia GG, Pandolfini L, Gustincich S, Sanges R. From the genome's perspective: Bearing somatic retrotransposition to leverage the regulatory potential of L1 RNAs. Bioessays 2025; 47:e2400125. [PMID: 39520370 PMCID: PMC11755705 DOI: 10.1002/bies.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Transposable elements (TEs) are mobile genomic elements constituting a big fraction of eukaryotic genomes. They ignite an evolutionary arms race with host genomes, which in turn evolve strategies to restrict their activity. Despite being tightly repressed, TEs display precisely regulated expression patterns during specific stages of mammalian development, suggesting potential benefits for the host. Among TEs, the long interspersed nuclear element (LINE-1 or L1) has been found to be active in neurons. This activity prompted extensive research into its possible role in cognition. So far, no specific cause-effect relationship between L1 retrotransposition and brain functions has been conclusively identified. Nevertheless, accumulating evidence suggests that interactions between L1 RNAs and RNA/DNA binding proteins encode specific messages that cells utilize to activate or repress entire transcriptional programs. We summarize recent findings highlighting the activity of L1 RNAs at the non-coding level during early embryonic and brain development. We propose a hypothesis suggesting a mutualistic relationship between L1 mRNAs and the host cell. In this scenario, cells tolerate a certain rate of retrotransposition to leverage the regulatory effects of L1s as non-coding RNAs on potentiating their mitotic potential. In turn, L1s benefit from the cell's proliferative state to increase their chance to mobilize.
Collapse
Affiliation(s)
- Damiano Mangoni
- Center for Human Technologies, Non‐Coding RNAs and RNA‐Based TherapeuticsIstituto Italiano di Tecnologia (IIT)GenovaItaly
| | - Aurora Mazzetti
- Area of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| | - Federico Ansaloni
- Center for Human Technologies, Non‐Coding RNAs and RNA‐Based TherapeuticsIstituto Italiano di Tecnologia (IIT)GenovaItaly
| | - Alessandro Simi
- Center for Human Technologies, Non‐Coding RNAs and RNA‐Based TherapeuticsIstituto Italiano di Tecnologia (IIT)GenovaItaly
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, RNA Systems BiologyIstituto Italiano di Tecnologia (IIT)GenovaItaly
| | - Luca Pandolfini
- Center for Human Technologies, Non‐Coding RNAs and RNA‐Based TherapeuticsIstituto Italiano di Tecnologia (IIT)GenovaItaly
| | - Stefano Gustincich
- Center for Human Technologies, Non‐Coding RNAs and RNA‐Based TherapeuticsIstituto Italiano di Tecnologia (IIT)GenovaItaly
| | - Remo Sanges
- Center for Human Technologies, Non‐Coding RNAs and RNA‐Based TherapeuticsIstituto Italiano di Tecnologia (IIT)GenovaItaly
- Area of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| |
Collapse
|
4
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA sequencing can probe organelle genome pervasive transcription. Brief Funct Genomics 2024; 23:695-701. [PMID: 38880995 DOI: 10.1093/bfgp/elae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.
Collapse
Affiliation(s)
- Matheus Sanita Lima
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Padua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology - Paraná - UTFPR, Avenida Alberto Carazzai 1640, Cornélio Procópio, PR 86300000, Brazil
| | - David Roy Smith
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
6
|
Walter NG. Are non-protein coding RNAs junk or treasure?: An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non-functional or functional RNAs. Bioessays 2024; 46:e2300201. [PMID: 38351661 DOI: 10.1002/bies.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non-protein coding, or non-coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is "junk", a term still championed by some geneticists and evolutionary biologists. In contrast, molecular biologists and biochemists studying the vast number of transcripts produced from most of this genome "junk" often surmise that these ncRNAs have biological significance. What gives? This essay contrasts the two opposing, extant viewpoints, aiming to explain their bases, which arise from distinct reference frames of the underlying scientific disciplines. Finally, it aims to reconcile these divergent mindsets in hopes of stimulating synergy between scientific fields.
Collapse
Affiliation(s)
- Nils G Walter
- Center for RNA Biomedicine, Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Krammer F, Palese P. Profile of Katalin Karikó and Drew Weissman: 2023 Nobel laureates in Physiology or Medicine. Proc Natl Acad Sci U S A 2024; 121:e2400423121. [PMID: 38381788 PMCID: PMC10907315 DOI: 10.1073/pnas.2400423121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
|
8
|
García-Caballero D, Hart JR, Vogt PK. Long Non-Coding RNAs as "MYC Facilitators". PATHOPHYSIOLOGY 2023; 30:389-399. [PMID: 37755396 PMCID: PMC10534484 DOI: 10.3390/pathophysiology30030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this article, we discuss a class of MYC-interacting lncRNAs (long non-coding RNAs) that share the following criteria: They are direct transcriptional targets of MYC. Their expression is coordinated with the expression of MYC. They are required for sustained MYC-driven cell proliferation, and they are not essential for cell survival. We refer to these lncRNAs as "MYC facilitators" and discuss two representative members of this class of lncRNAs, SNHG17 (small nuclear RNA host gene) and LNROP (long non-coding regulator of POU2F2). We also present a general hypothesis on the role of lncRNAs in MYC-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Peter K. Vogt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|