1
|
Oladejo DO, duselu GO, Dokunmu TM, Isewon I, Oyelade J, Okafor E, Iweala EEJ, Adebiyi E. In silico Structure Prediction, Molecular Docking, and Dynamic Simulation of Plasmodium falciparum AP2-I Transcription Factor. Bioinform Biol Insights 2023; 17:11779322221149616. [PMID: 36704725 PMCID: PMC9871981 DOI: 10.1177/11779322221149616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023] Open
Abstract
Plasmodium falciparum Apicomplexan Apetala 2 Invasion (PfAP2-I) transcription factor (TF) is a protein that regulates the expression of a subset of gene families involved in P. falciparum red blood cell (RBC) invasion. Inhibiting PfAP2-I TF with small molecules represents a potential new antimalarial therapeutic target to combat drug resistance, which this study aims to achieve. The 3D model structure of PfAP2-I was predicted ab initio using ROBETTA prediction tool and was validated using Save server 6.0 and MolProbity. Computed Atlas of Surface Topography of proteins (CASTp) 3.0 was used to predict the active sites of the PfAP2-I modeled structure. Pharmacophore modeling of the control ligand and PfAP2-I modeled structure was carried out using the Pharmit server to obtain several compounds used for molecular docking analysis. Molecular docking and postdocking studies were conducted using AutoDock vina and Discovery studio. The designed ligands' toxicity predictions and in silico drug-likeness were performed using the SwissADME predictor and OSIRIS Property Explorer. The modeled protein structure from the ROBETTA showed a validation result of 96.827 for ERRAT, 90.2% of the amino acid residues in the most favored region for the Ramachandran plot, and MolProbity score of 1.30 in the 98th percentile. Five (5) best hit compounds from molecular docking analysis were selected based on their binding affinity (between -8.9 and -11.7 Kcal/mol) to the active site of PfAP2-I and were considered for postdocking studies. For the absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties, compound MCULE-7146940834 had the highest drug score (0.63) and drug-likeness (6.76). MCULE-7146940834 maintained a stable conformation within the flexible protein's active site during simulation. The good, estimated binding energies, drug-likeness, drug score, and molecular dynamics simulation interaction observed for MCULE-7146940834 against PfAP2-I show that MCULE-7146940834 can be considered a lead candidate for PfAP2-I inhibition. Experimental validations should be carried out to ascertain the efficacy of these predicted best hit compounds.
Collapse
Affiliation(s)
- David O Oladejo
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Gbolahan O duselu
- Department of Chemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Titilope M Dokunmu
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Itunuoluwa Isewon
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Jelili Oyelade
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Esther Okafor
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Emeka EJ Iweala
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| |
Collapse
|
2
|
Sardar R, Kaushik A, Pandey R, Mohmmed A, Ali S, Gupta D. ApicoTFdb: the comprehensive web repository of apicomplexan transcription factors and transcription-associated co-factors. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5560306. [PMID: 31529106 PMCID: PMC6748703 DOI: 10.1093/database/baz094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/28/2019] [Accepted: 06/28/2019] [Indexed: 02/03/2023]
Abstract
Despite significant progress in apicomplexan genome sequencing and genomics, the current list of experimentally validated transcription factors (TFs) in these genomes is incomplete and mainly consists of AP2 family of proteins, with only a limited number of non-AP2 family TFs and transcription-associated co-factors (TcoFs). We have performed a systematic bioinformatics-aided prediction of TFs and TcoFs in apicomplexan genomes and developed the ApicoTFdb database which consists of experimentally validated as well as computationally predicted TFs and TcoFs in 14 apicomplexan species. The predicted TFs are manually curated to complement the existing annotations. The current version of the database includes 1292 TFs which includes experimentally validated and computationally predicted TFs, representing 20 distinct families across 14 apicomplexan species. The predictions include TFs of TUB, NAC, BSD, HTH, Cupin/Jumonji, winged helix and FHA family proteins, not reported earlier as TFs in the genomes. Apart from TFs, ApicoTFdb also classifies TcoFs into three main subclasses: TRs, CRRs and RNARs, representing 2491 TcoFs in 14 apicomplexan species, are analyzed in this study. The database is designed to integrate different tools for comparative analysis. All entries in the database are dynamically linked with other databases, literature reference, protein–protein interactions, pathways and annotations associated with each protein. ApicoTFdb will be useful to the researchers interested in less-studied gene regulatory mechanisms mediating the complex life cycle of the apicomplexan parasites. The database will aid in the discovery of novel drug targets to much needed combat the growing drug resistance in the parasites.
Collapse
Affiliation(s)
- Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.,Department of Biochemistry, Jamia Hamdard, Hamdard Nagar, New Delhi 110057, India
| | - Abhinav Kaushik
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Asif Mohmmed
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shakir Ali
- Department of Biochemistry, Jamia Hamdard, Hamdard Nagar, New Delhi 110057, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
3
|
Zhang R, Wu J, Ferrandon S, Glowacki KJ, Houghton JA. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing. Oncotarget 2018; 7:80190-80207. [PMID: 27863397 PMCID: PMC5348313 DOI: 10.18632/oncotarget.13376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Jiahui Wu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katie J Glowacki
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Janet A Houghton
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| |
Collapse
|
4
|
Sidhu K, Kumar V. c-ETS transcription factors play an essential role in the licensing of human MCM4 origin of replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1319-28. [DOI: 10.1016/j.bbagrm.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
|
5
|
Abstract
DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.
Collapse
|
6
|
Soriano I, Morafraile EC, Vázquez E, Antequera F, Segurado M. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae. BMC Genomics 2014; 15:791. [PMID: 25218085 PMCID: PMC4176565 DOI: 10.1186/1471-2164-15-791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood. Results By performing high-resolution analysis of genome-wide nucleosome positioning we have identified different chromatin architectures at early and late replication origins. These different patterns are already established in G1 and are tightly correlated with the organization of adjacent transcription units. Moreover, specific early and late nucleosomal patterns are fixed robustly, even in rpd3 mutants in which histone acetylation and origin timing have been significantly altered. Nevertheless, higher histone acetylation levels correlate with the local modulation of chromatin structure, leading to increased origin accessibility. In addition, we conducted parallel analyses of replication and nucleosome dynamics that revealed that chromatin structure at origins is modulated during origin activation. Conclusions Our results show that early and late replication origins present distinctive nucleosomal configurations, which are preferentially associated to different genomic regions. Our data also reveal that origin structure is dynamic and can be locally modulated by histone deacetylation, as well as by origin activation. These data offer novel insight into the contribution of chromatin structure to origin selection and firing in budding yeast. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-791) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Mónica Segurado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/ Universidad de Salamanca (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.
| |
Collapse
|
7
|
Abstract
The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC's diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer.
Collapse
Affiliation(s)
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, New York 10032 Department of Genetics and Development, Columbia University, New York, New York 10032
| |
Collapse
|
8
|
Mechanism of chromosomal DNA replication initiation and replication fork stabilization in eukaryotes. SCIENCE CHINA-LIFE SCIENCES 2014; 57:482-7. [PMID: 24699916 DOI: 10.1007/s11427-014-4631-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/18/2013] [Indexed: 10/25/2022]
Abstract
Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replication of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites called DNA origins so that the replication could be completed in a limited time. Further, eukaryotic DNA replication is sophisticatedly regulated, and this regulation guarantees that each origin fires once per S phase and each segment of DNA gets duplication also once per cell cycle. The first step of replication initiation is the assembly of pre-replication complex (pre-RC). Since 1973, four proteins, Cdc6/Cdc18, MCM, ORC and Cdt1, have been extensively studied and proved to be pre-RC components. Recently, a novel pre-RC component called Sap1/Girdin was identified. Sap1/Girdin is required for loading Cdc18/Cdc6 to origins for pre-RC assembly in the fission yeast and human cells, respectively. At the transition of G1 to S phase, pre-RC is activated by the two kinases, cyclindependent kinase (CDK) and Dbf4-dependent kinase (DDK), and subsequently, RPA, primase-polα, PCNA, topoisomerase, Cdc45, polδ, and polɛ are recruited to DNA origins for creating two bi-directional replication forks and initiating DNA replication. As replication forks move along chromatin DNA, they frequently stall due to the presence of a great number of replication barriers on chromatin DNA, such as secondary DNA structures, protein/DNA complexes, DNA lesions, gene transcription. Stalled forks must require checkpoint regulation for their stabilization. Otherwise, stalled forks will collapse, which results in incomplete DNA replication and genomic instability. This short review gives a concise introduction regarding the current understanding of replication initiation and replication fork stabilization.
Collapse
|
9
|
Abstract
The MYC family of proteins is a group of basic-helix-loop-helix-leucine zipper transcription factors that feature prominently in cancer. Overexpression of MYC is observed in the vast majority of human malignancies and promotes an extraordinary set of changes that impact cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion, differentiation, and metastasis. The purpose of this review is to introduce the reader to the mammalian family of MYC proteins, highlight important functional properties that endow them with their potent oncogenic potential, describe their mechanisms of action and of deregulation in cancer cells, and discuss efforts to target the unique properties of MYC, and of MYC-driven tumors, to treat cancer.
Collapse
|
10
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
11
|
RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins. PLoS One 2013; 8:e53405. [PMID: 23308214 PMCID: PMC3537633 DOI: 10.1371/journal.pone.0053405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022] Open
Abstract
The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication.
Collapse
|
12
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
13
|
Herr A, Longworth M, Ji JY, Korenjak M, Macalpine DM, Dyson NJ. Identification of E2F target genes that are rate limiting for dE2F1-dependent cell proliferation. Dev Dyn 2012; 241:1695-707. [PMID: 22972499 DOI: 10.1002/dvdy.23857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Microarray studies have shown that the E2F transcription factor influences the expression of many genes but it is unclear how many of these targets are important for E2F-mediated control of cell proliferation. RESULTS We assembled a collection of mutant alleles of 44 dE2F1-dependent genes and tested whether these could modify visible phenotypes caused by the tissue-specific depletion of dE2F1. More than half of the mutant alleles dominantly enhanced de2f1-dsRNA phenotypes suggesting that the in vivo functions of dE2F1 can be limited by the reduction in the level of expression of many different targets. Unexpectedly, several mutant alleles suppressed de2f1-dsRNA phenotypes. One of the strongest of these suppressors was Orc5. Depletion of ORC5 increased proliferation in cells with reduced dE2F1 and specifically elevated the expression of dE2F1-regulated genes. Importantly, these effects were independent of dE2F1 protein levels, suggesting that reducing the level of ORC5 did not interfere with the general targeting of dE2F1. CONCLUSIONS We propose that the interaction between ORC5 and dE2F1 may reflect a feedback mechanism between replication initiation proteins and dE2F1 that ensures that proliferating cells maintain a robust level of replication proteins for the next cell cycle.
Collapse
Affiliation(s)
- Anabel Herr
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Laboratory of Molecular Oncology, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
14
|
Emerging functions of transcription factors in malaria parasite. J Biomed Biotechnol 2011; 2011:461979. [PMID: 22131806 PMCID: PMC3216465 DOI: 10.1155/2011/461979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/31/2022] Open
Abstract
Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs) are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.
Collapse
|
15
|
Initiation of Epstein-Barr virus lytic replication requires transcription and the formation of a stable RNA-DNA hybrid molecule at OriLyt. J Virol 2010; 85:2837-50. [PMID: 21191028 DOI: 10.1128/jvi.02175-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genetic elements of herpesvirus origins of lytic replication have been characterized in detail; however, much remains to be elucidated concerning their functional role in replication initiation. In the case of the Epstein-Barr virus (EBV), we have found that in addition to the two well-defined critical elements required for lytic replication (the upstream and downstream essential elements, UEE and DEE), the origin of lytic replication (OriLyt) also requires the presence of a GC-rich RNA in cis. The BHLF1 transcript is similar to the essential K5 transcript identified at the Kaposi's sarcoma-associated herpesvirus OriLyt. We have found that truncation of the BHLF1 transcript or deletion of the TATA box, but not the putative ATG initiation codon, reduce OriLyt function to background levels. By using an antibody specific for RNA-DNA hybrid molecules, we found the BHLF1 RNA stably annealed to its DNA template during the early steps of lytic reactivation. Furthermore, expression of human RNase H1, which degrades RNA in RNA-DNA hybrids, drastically reduces OriLyt-dependent DNA replication as well as recruitment of the viral single-stranded DNA binding protein BALF2 to OriLyt. These studies suggest that a GC-rich OriLyt transcript is an important component of gammaherpesvirus lytic origins and is required for initial strand separation and loading of core replication proteins.
Collapse
|
16
|
Abstract
Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.
Collapse
Affiliation(s)
- Benoit Miotto
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université Paris 7, Paris, France.
| | | |
Collapse
|
17
|
Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 2010; 11:728-38. [DOI: 10.1038/nrm2976] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
MicroRNAs encoded by Kaposi's sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep 2010; 11:784-90. [PMID: 20847741 DOI: 10.1038/embor.2010.132] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 07/26/2010] [Indexed: 12/26/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with Kaposi's sarcoma and lymphomas. The pathogenesis of KSHV depends on the balance between two phases of the viral cycle: latency and lytic replication. In this study, we report that KSHV-encoded microRNAs (miRNAs) function as regulators by maintaining viral latency and inhibiting viral lytic replication. MiRNAs are short, noncoding, small RNAs that post-transcriptionally regulate the expression of messenger RNAs. Of the 12 viral miRNAs expressed in latent KSHV-infected cells, we observed that expression of miR-K3 can suppress both viral lytic replication and gene expression. Further experiments indicate that miR-K3 can regulate viral latency by targeting nuclear factor I/B. Nuclear factor I/B can activate the promoter of the viral immediate-early transactivator replication and transcription activator (RTA), and depletion of nuclear factor I/B by short hairpin RNAs had similar effects on the viral life cycle to those of miR-K3. Our results suggest a role for KSHV miRNAs in regulating the viral life cycle.
Collapse
|
19
|
Karmakar S, Mahajan MC, Schulz V, Boyapaty G, Weissman SM. A multiprotein complex necessary for both transcription and DNA replication at the β-globin locus. EMBO J 2010; 29:3260-71. [PMID: 20808282 DOI: 10.1038/emboj.2010.204] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/29/2010] [Indexed: 12/17/2022] Open
Abstract
DNA replication, repair, transcription and chromatin structure are intricately associated nuclear processes, but the molecular links between these events are often obscure. In this study, we have surveyed the protein complexes that bind at β-globin locus control region, and purified and characterized the function of one such multiprotein complex from human erythroleukemic K562 cells. We further validated the existence of this complex in human CD34+ cell-derived normal erythroid cells. This complex contains ILF2/ILF3 transcription factors, p300 acetyltransferase and proteins associated with DNA replication, transcription and repair. RNAi knockdown of ILF2, a DNA-binding component of this complex, abrogates the recruitment of the complex to its cognate DNA sequence and inhibits transcription, histone acetylation and usage of the origin of DNA replication at the β-globin locus. These results imply a direct link between mammalian DNA replication, transcription and histone acetylation mediated by a single multiprotein complex.
Collapse
Affiliation(s)
- Subhradip Karmakar
- Department of Genetics, The Anlyan Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
20
|
Sun J, Kong D. DNA replication origins, ORC/DNA interaction, and assembly of pre-replication complex in eukaryotes. Acta Biochim Biophys Sin (Shanghai) 2010; 42:433-9. [PMID: 20705581 DOI: 10.1093/abbs/gmq048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chromosomal DNA replication in eukaryotic cells is highly complicated and sophisticatedly regulated. Owing to its large size, a typical eukaryotic genome contains hundreds to tens of thousands of initiation sites called DNA replication origins where DNA synthesis takes place. Multiple initiation sites remove the constraint of a genome size because only a certain amount of DNA can be replicated from a single origin in a limited time. The activation of these multiple origins must be coordinated so that each segment of chromosomal DNA is precisely duplicated only once per cell cycle. Although DNA replication is a vital process for cell growth and its mechanism is highly conserved, recent studies also reveal significant diversity in origin structure, assembly of pre-replication complex (pre-RC) and regulation of replication initiation along evolutionary lines. The DNA replication origins in the fission yeast Schizosaccharomyces pombe are found to contain a second essential element that is bound by Sap1 protein besides the essential origin recognition complex-binding site. Sap1 is recently demonstrated to be a novel replication initiation protein that plays an essential role in loading the initiation protein Cdc18 to origins and thus directly participates in pre-RC formation. In this review, we summarize the recent advance in understanding how DNA replication origins are organized, how pre-RC is assembled and how DNA replication is initiated and regulated in yeast and metazoans.
Collapse
Affiliation(s)
- Jingya Sun
- Department of Environmental Science, Zhejiang Ocean University, Zhoushan City, China
| | | |
Collapse
|
21
|
Kocgozlu L, Lavalle P, Koenig G, Senger B, Haikel Y, Schaaf P, Voegel JC, Tenenbaum H, Vautier D. Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells. J Cell Sci 2010; 123:29-39. [PMID: 20016064 DOI: 10.1242/jcs.053520] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin cytoskeleton forms a physical connection between the extracellular matrix, adhesion complexes and nuclear architecture. Because tissue stiffness plays key roles in adhesion and cytoskeletal organization, an important open question concerns the influence of substrate elasticity on replication and transcription. To answer this major question, polyelectrolyte multilayer films were used as substrate models with apparent elastic moduli ranging from 0 to 500 kPa. The sequential relationship between Rac1, vinculin adhesion assembly, and replication becomes efficient at above 200 kPa because activation of Rac1 leads to vinculin assembly, actin fiber formation and, subsequently, to initiation of replication. An optimal window of elasticity (200 kPa) is required for activation of focal adhesion kinase through auto-phosphorylation of tyrosine 397. Transcription, including nuclear recruitment of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), occurred above 50 kPa. Actin fiber and focal adhesion signaling are not required for transcription. Above 50 kPa, transcription was correlated with alphav-integrin engagement together with histone H3 hyperacetylation and chromatin decondensation, allowing little cell spreading. By contrast, soft substrate (below 50 kPa) promoted morphological changes characteristic of apoptosis, including cell rounding, nucleus condensation, loss of focal adhesions and exposure of phosphatidylserine at the outer cell surface. On the basis of our data, we propose a selective and uncoupled contribution from the substrate elasticity to the regulation of replication and transcription activities for an epithelial cell model.
Collapse
Affiliation(s)
- Leyla Kocgozlu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 977, 67085 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation. Mol Cell Biol 2010; 30:1495-507. [PMID: 20065034 DOI: 10.1128/mcb.00710-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Template unwinding during DNA replication initiation requires the loading of the MCM helicase activator Cdc45 at replication origins. We show that Cdc45 interacts with the DNA unwinding element (DUE) binding protein DUE-B and that these proteins localize to the DUEs of active replication origins. DUE-B and Cdc45 are not bound at the inactive c-myc replicator in the absence of a functional DUE or at the recently identified ataxin 10 (ATX10) origin, which is silent before disease-related (ATTCT)(n) repeat length expansion of its DUE sequence, despite the presence of the origin recognition complex (ORC) and MCM proteins at these origins. Addition of a heterologous DUE to the ectopic c-myc origin, or expansion of the ATX10 DUE, leads to origin activation, DUE-B binding, and Cdc45 binding. DUE-B, Cdc45, and topoisomerase IIbeta binding protein 1 (TopBP1) form complexes in cell extracts and when expressed from baculovirus vectors. During replication in Xenopus egg extracts, DUE-B and Cdc45 bind to chromatin with similar kinetics, and DUE-B immunodepletion blocks replication and the loading of Cdc45 and a fraction of TopBP1. The coordinated binding of DUE-B and Cdc45 to origins and the physical interactions of DUE-B, Cdc45, and TopBP1 suggest that complexes of these proteins are necessary for replication initiation.
Collapse
|
24
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|
25
|
HOXD13 binds DNA replication origins to promote origin licensing and is inhibited by geminin. Mol Cell Biol 2009; 29:5775-88. [PMID: 19703996 DOI: 10.1128/mcb.00509-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HOX DNA-binding proteins control patterning during development by regulating processes such as cell aggregation and proliferation. Recently, a possible involvement of HOX proteins in replication origin activity was suggested by results showing that a number of HOX proteins interact with the DNA replication licensing regulator geminin and bind a characterized human origin of replication. The functional significance of these observations, however, remained unclear. We show that HOXD13, HOXD11, and HOXA13 bind in vivo all characterized human replication origins tested. We furthermore show that HOXD13 interacts with the CDC6 loading factor, promotes pre-replication complex (pre-RC) proteins assembly at origins, and stimulates DNA synthesis in an in vivo replication assay. HOXD13 expression in cultured cells accelerates DNA synthesis initiation in correlation with the earlier pre-RC recruitment onto origins during G(1) phase. Geminin, which interacts with HOXD13 as well, blocks HOXD13-mediated assembly of pre-RC proteins and inhibits HOXD13-induced DNA replication. Our results uncover a function for Hox proteins in the regulation of replication origin activity and reveal an unforeseen role for the inhibition of HOX protein activity by geminin in the context of replication origin licensing.
Collapse
|
26
|
Audit B, Zaghloul L, Vaillant C, Chevereau G, d'Aubenton-Carafa Y, Thermes C, Arneodo A. Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells. Nucleic Acids Res 2009; 37:6064-75. [PMID: 19671527 PMCID: PMC2764438 DOI: 10.1093/nar/gkp631] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions approximately 300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as 'master' replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these 'master' origins are likely to play a key role in genome dynamics during evolution and in pathological situations.
Collapse
|
27
|
Weber JM, Irlbacher H, Ehrenhofer-Murray AE. Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. BMC Mol Biol 2008; 9:100. [PMID: 18990212 PMCID: PMC2585588 DOI: 10.1186/1471-2199-9-100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 11/06/2008] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Replication initiation at origins of replication in the yeast genome takes place on chromatin as a template, raising the question how histone modifications, for instance histone acetylation, influence origin firing. Initiation requires binding of the replication initiator, the Origin Recognition Complex (ORC), to a consensus sequence within origins. In addition, other proteins bind to recognition sites in the vicinity of ORC and support initiation. In previous work, we identified Sum1 as an origin-binding protein that contributes to efficient replication initiation. Sum1 is part of the Sum1/Rfm1/Hst1 complex that represses meiotic genes during vegetative growth via histone deacetylation by the histone deacetylase (HDAC) Hst1. RESULTS In this study, we investigated how Sum1 affected replication initiation. We found that it functioned in initiation as a component of the Sum1/Rfm1/Hst1 complex, implying a role for histone deacetylation in origin activity. We identified several origins in the yeast genome whose activity depended on both Sum1 and Hst1. Importantly, sum1Delta or hst1Delta caused a significant increase in histone H4 lysine 5 (H4 K5) acetylation levels, but not other H4 acetylation sites, at those origins. Furthermore, mutation of lysines to glutamines in the H4 tail, which imitates the constantly acetylated state, resulted in a reduction of origin activity comparable to that in the absence of Hst1, showing that deacetylation of H4 was important for full initiation capacity of these origins. CONCLUSION Taken together, our results demonstrate a role for histone deacetylation in origin activity and reveal a novel aspect of origin regulation by chromatin. These results suggest recruitment of the Sum1/Rfm1/Hst1 complex to a number of yeast origins, where Hst1 deacetylated H4 K5.
Collapse
Affiliation(s)
- Jan M Weber
- Zentrum für Medizinische Biotechnologie, Abteilung Genetik, Universität Duisburg-Essen, 45117 Essen, Germany.
| | | | | |
Collapse
|
28
|
Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci U S A 2008; 105:15837-42. [PMID: 18838675 DOI: 10.1073/pnas.0805208105] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To get insights into the regulation of replication initiation, we systematically mapped replication origins along 1% of the human genome in HeLa cells. We identified 283 origins, 10 times more than previously known. Origin density is strongly correlated with genomic landscapes, with clusters of closely spaced origins in GC-rich regions and no origins in large GC-poor regions. Origin sequences are evolutionarily conserved, and half of them map within or near CpG islands. Most of the origins overlap transcriptional regulatory elements, providing further evidence of a connection with gene regulation. Moreover, we identify c-JUN and c-FOS as important regulators of origin selection. Half of the identified replication initiation sites do not have an open chromatin configuration, showing the absence of a direct link with gene regulation. Replication timing analyses coupled with our origin mapping suggest that a relatively strict origin-timing program regulates the replication of the human genome.
Collapse
|
29
|
Macromolecular crowding and its potential impact on nuclear function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2100-7. [PMID: 18723053 DOI: 10.1016/j.bbamcr.2008.07.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/16/2008] [Accepted: 07/20/2008] [Indexed: 12/26/2022]
Abstract
It is well established, that biochemical reactions are dependent on pH, ionic strength, temperature and the concentration of reactants. However, the steric repulsion among bulky components of biological systems also affect biochemical behavior: The 'excluded volume effect of macromolecular crowding' drives bulky components into structurally compact organizations, increases their thermodynamic activities and slows down diffusion. The very special composition of the cell nucleus, which is packed with high-molecular chromatin, ribonucleo-particles and associated proteins, suggests that crowding-effects are part of nuclear functionality. Realizing that many nuclear processes, notably gene transcription, hnRNA splicing and DNA replication, use macromolecular machines, and taking into account that macromolecular crowding provides a cooperative momentum for the assembly of macromolecular complexes, we here elaborate why macromolecular crowding may be functionally important in supporting the statistical significance of nuclear activities.
Collapse
|
30
|
Murakami Y, Chen LF, Sanechika N, Kohzaki H, Ito Y. Transcription factor Runx1 recruits the polyomavirus replication origin to replication factories. J Cell Biochem 2007; 100:1313-23. [PMID: 17063494 DOI: 10.1002/jcb.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eukaryotic DNA replication takes place in the replication factories, where replication proteins are properly assembled to form replication forks. Thus, recruitment of DNA replication origins to the replication factories must be the key step for the regulation of DNA replication. The transcription factor Runx1 associates with the nuclear matrix, the putative substructure of DNA replication factories. An earlier report from our laboratory showed that Runx1 activates polyomavirus DNA replication, and that this requires its nuclear matrix-binding activity. Here, we show that Runx1 activates polyomavirus DNA replication by stimulating the binding of the viral-encoded replication initiator/helicase, large T antigen, to its replication origin. We found that newly replicated polyomavirus DNA is associated with the nuclear matrix and that large T antigen is targeted to replication factories, suggesting that polyomavirus is replicated in replication factories on the nuclear matrix. Although Runx1 did not co-localize with large T antigen-containing foci by itself, it co-localized with large T antigen-containing replication factories during Runx1-dependent polyomavirus DNA replication. These observations together suggest that Runx1 recruits the polyomavirus replication origin to the replication factory on the nuclear matrix, and that this requires the nuclear matrix-binding activity of Runx1.
Collapse
Affiliation(s)
- Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Chromatin immunoprecipitation (ChIP) assays are widely used to investigate where chromatin-binding proteins bind to the genome. The standard assay is very time consuming. We have developed a rapid ChIP assay in which the immunoprecipitates serve directly as PCR templates. This assay eliminates the step to reverse the crosslinking, shortening the assay by 1 day. It also requires a less immunoprecipitating antibody, permits many samples to be tested simultaneously, and is more sensitive than the standard ChIP assay.
Collapse
|
32
|
Rytkönen AK, Hillukkala T, Vaara M, Sokka M, Jokela M, Sormunen R, Nasheuer HP, Nethanel T, Kaufmann G, Pospiech H, Syväoja JE. DNA polymerase ε associates with the elongating form of RNA polymerase II and nascent transcripts. FEBS J 2006; 273:5535-49. [PMID: 17212775 DOI: 10.1111/j.1742-4658.2006.05544.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA polymerase epsilon co-operates with polymerases alpha and delta in the replicative DNA synthesis of eukaryotic cells. We describe here a specific physical interaction between DNA polymerase epsilon and RNA polymerase II, evidenced by reciprocal immunoprecipitation experiments. The interacting RNA polymerase II was the hyperphosphorylated IIO form implicated in transcriptional elongation, as inferred from (a) its reduced electrophoretic mobility that was lost upon phosphatase treatment, (b) correlation of the interaction with phosphorylation of Ser5 of the C-terminal domain heptapeptide repeat, and (c) the ability of C-terminal domain kinase inhibitors to abolish it. Polymerase epsilon was also shown to UV crosslink specifically alpha-amanitin-sensitive transcripts, unlike DNA polymerase alpha that crosslinked only to RNA-primed nascent DNA. Immunofluorescence microscopy revealed partial colocalization of RNA polymerase IIO and DNA polymerase epsilon, and immunoelectron microscopy revealed RNA polymerase IIO and DNA polymerase epsilon in defined nuclear clusters at various cell cycle stages. The RNA polymerase IIO-DNA polymerase epsilon complex did not relocalize to specific sites of DNA damage after focal UV damage. Their interaction was also independent of active DNA synthesis or defined cell cycle stage.
Collapse
Affiliation(s)
- Anna K Rytkönen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 2006; 7:276. [PMID: 17067396 PMCID: PMC1657020 DOI: 10.1186/1471-2164-7-276] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 10/26/2006] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Eukaryotic replication origins exhibit different initiation efficiencies and activation times within S-phase. Although local chromatin structure and function influences origin activity, the exact mechanisms remain poorly understood. A key to understanding the exact features of chromatin that impinge on replication origin function is to define the precise locations of the DNA sequences that control origin function. In S. cerevisiae, Autonomously Replicating Sequences (ARSs) contain a consensus sequence (ACS) that binds the Origin Recognition Complex (ORC) and is essential for origin function. However, an ACS is not sufficient for origin function and the majority of ACS matches do not function as ORC binding sites, complicating the specific identification of these sites. RESULTS To identify essential origin sequences genome-wide, we utilized a tiled oligonucleotide array (NimbleGen) to map the ORC and Mcm2p binding sites at high resolution. These binding sites define a set of potential Autonomously Replicating Sequences (ARSs), which we term nimARSs. The nimARS set comprises 529 ORC and/or Mcm2p binding sites, which includes 95% of known ARSs, and experimental verification demonstrates that 94% are functional. The resolution of the analysis facilitated identification of potential ACSs (nimACSs) within 370 nimARSs. Cross-validation shows that the nimACS predictions include 58% of known ACSs, and experimental verification indicates that 82% are essential for ARS activity. CONCLUSION These findings provide the most comprehensive, accurate, and detailed mapping of ORC binding sites to date, adding to the emerging picture of the chromatin organization of the budding yeast genome.
Collapse
|
34
|
Gray SJ, Liu G, Altman AL, Small LE, Fanning E. Discrete functional elements required for initiation activity of the Chinese hamster dihydrofolate reductase origin beta at ectopic chromosomal sites. Exp Cell Res 2006; 313:109-20. [PMID: 17078947 PMCID: PMC1810229 DOI: 10.1016/j.yexcr.2006.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 01/06/2023]
Abstract
The Chinese hamster dihydrofolate reductase (DHFR) DNA replication initiation region, the 5.8 kb ori-beta, can function as a DNA replicator at random ectopic chromosomal sites in hamster cells. We report a detailed genetic analysis of the DiNucleotide Repeat (DNR) element, one of several sequence elements necessary for ectopic ori-beta activity. Deletions within ori-beta identified a 132 bp core region within the DNR element, consisting mainly of dinucleotide repeats, and a downstream region that are required for ori-beta initiation activity at non-specific ectopic sites in hamster cells. Replacement of the DNR element with Xenopus or mouse transcriptional elements from rDNA genes restored full levels of initiation activity, but replacement with a nucleosome positioning element or a viral intron sequence did not. The requirement for the DNR element and three other ori-beta sequence elements was conserved when ori-beta activity was tested at either random sites or at a single specific ectopic chromosomal site in human cells. These results confirm the importance of specific cis-acting elements in directing the initiation of DNA replication in mammalian cells, and provide new evidence that transcriptional elements can functionally substitute for one of these elements in ori-beta.
Collapse
Affiliation(s)
- Steven J. Gray
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Guoqi Liu
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Amy L. Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Lawrence E. Small
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Ellen Fanning
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
- * To whom correspondence should be addressed: Department of Biological Sciences, Vanderbilt University, VU Station B 351634 Nashville, TN 37235-1634 Tel: (615) 343-5677 Fax: (615) 343-6707
| |
Collapse
|
35
|
Foulk MS, Liang C, Wu N, Blitzblau HG, Smith H, Alam D, Batra M, Gerbi SA. Ecdysone induces transcription and amplification in Sciara coprophila DNA puff II/9A. Dev Biol 2006; 299:151-63. [PMID: 16938289 DOI: 10.1016/j.ydbio.2006.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 01/10/2023]
Abstract
DNA replication is normally tightly regulated to ensure the production of only one copy of the genome per cell cycle. However, DNA puffs of the salivary gland giant polytene chromosomes of Sciara coprophila undergo DNA amplification during the normal course of development, overriding this control. This developmental strategy provides more template for the production of large amounts of protein needed for pupation. We have focused on DNA puff II/9A, which amplifies approximately 17-fold over the rest of the genome. Evidence presented here suggests that DNA amplification at this locus is controlled by the steroid hormone ecdysone, the master regulator of insect development. Explanted, pre-amplification stage salivary glands undergo premature amplification when incubated with ecdysone. Injection of ecdysone into pre-amplification stage larvae induces amplification. Ecdysone also induces transcription of the II/9A genes. We report the presence of a putative ecdysone response element directly adjacent to the origin recognition complex (ORC)-binding site in the II/9A origin and demonstrate that it is efficiently bound by the Sciara ecdysone receptor. These results implicate ecdysone in the regulation of DNA amplification in Sciara and suggest the ecdysone receptor may be the elusive amplification factor. This would be a new role for this transcription factor.
Collapse
Affiliation(s)
- Michael S Foulk
- Brown University, 69 Brown St.-J.W. Wilson Laboratory, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Epstein–Barr virus (EBV) is a gammaherpesvirus with a 172kb genome and many genes encoding enzymes for lytic viral DNA replication. Recent observations indicate that an S-phase-like environment and the activated DNA repair system are required for viral lytic DNA replication. The virally encoded DNA replication-associated enzymes are then expressed in two clusters, suggesting their participation at different stages of replication. Simultaneously, EBV-encoded regulatory proteins may modulate cell-cycle control to enhance virus replication efficiency. The interactions among proteins in the viral replication complex and cellular proteins may either generate structural specificities for replication proteins or stabilize the protein complexes. During infection, EBV has evolved several strategies to overcome the host defense mechanism, such as interfering with innate immunity and withdrawing into a latent state. This review discusses the latest progress in viral control of lytic replication and the interactions among viral lytic replication compartment and cellular machineries. The possible contribution of EBV lytic gene products to human malignancy is also discussed.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute of Microbiology, No 1, Jen-Ai Rd, 1st Section, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute of Microbiology, No 1, Jen-Ai Rd, 1st Section, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Hayashida T, Oda M, Ohsawa K, Yamaguchi A, Hosozawa T, Locksley RM, Giacca M, Masai H, Miyatake S. Replication initiation from a novel origin identified in the Th2 cytokine cluster locus requires a distant conserved noncoding sequence. THE JOURNAL OF IMMUNOLOGY 2006; 176:5446-54. [PMID: 16622012 DOI: 10.4049/jimmunol.176.9.5446] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lineage commitment of Th cells is associated with the establishment of specific transcriptional programs of cytokines. However, how Th cell differentiation affects the program of DNA replication has not been addressed. To gain insight into interplays between differentiation-induced transcription regulation and initiation of DNA replication, we took advantage of an in vitro differentiation system of naive T cells, in which one can manipulate their differentiation into Th1 or Th2 cells. We searched for replication origins in the murine IL-4/IL-13 locus and compared their profiles in the two Th cell lineages which were derived in vitro from the same precursor T cells. We identified a replication origin (ori(IL-13)) downstream from exon 4 of IL-13 and showed that this origin functions in both Th2 and Th1 cells. A distant regulatory element called CNS-1 (conserved noncoding sequence 1) in the IL-4/IL-13 intergenic region coincides with a Th2-specific DNase I-hypersensitive site and is required for efficient, coordinated expression of Th2 cytokines. Replication initiation from ori(IL-13) is significantly reduced in Th1 and Th2 cells derived from CNS-1-deficient mice. However, the replication timing of this locus is consistently early during S phase in both Th1 and Th2 cells under either the wild-type or CNS-1 deletion background. Thus, the conserved noncoding element in the intergenic region regulates replication initiation from a distant replication origin in a manner independent from its effect on lineage-specific transcription but not the replication timing of the segment surrounding this origin.
Collapse
Affiliation(s)
- Toshiro Hayashida
- Cytokine Project, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, 113-8613 Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|