1
|
Sharma S, Thomas E, Dahal S, Das S, Kothari S, Roy U, Kumari N, Gopalakrishnan V, Raghavan S. Formation of multiple G-quadruplexes contributes toward BCR fragility associated with chronic myelogenous leukemia. Nucleic Acids Res 2025; 53:gkaf167. [PMID: 40114373 PMCID: PMC11925732 DOI: 10.1093/nar/gkaf167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
The Philadelphia chromosome, the translocation between BCR and ABL genes, is seen in 95% of chronic myeloid leukemia (CML) patients. Although discovered >60 years ago, the molecular mechanism of BCR fragility is unclear. Here, we have identified several G4 DNA motifs at the BCR fragile region of CML patients. Various lines of experimentation revealed that the breakpoint regions could fold into multiple intramolecular G-quadruplex structures. The sodium bisulfite modification assay revealed single strandedness in the fragile region when present on a plasmid and human genome. Circular dichroism spectroscopy revealed the parallel G4 DNA formation, leading to polymerase arrest at the BCR breakpoints. Intracellular recombination assay revealed that DNA breakage at the BCR fragile region could join with the break generated by ISceI endonuclease. Finally, purified AID could bind and deaminate cytosines when present on single-stranded DNA generated due to G4 DNA, both in vitro and inside the cells. Therefore, our results suggest that AID binds to G4 DNA present at the BCR fragile region, resulting in the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, which can later get converted into a double-strand break, leading to t(9;22) chromosomal translocation.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Elizabeth Thomas
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sayak Das
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shefali Kothari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Department of Zoology, St. Joseph's College, Irinjalakuda, Kerala 680121, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Kumari N, Das K, Sharma S, Dahal S, Desai SS, Roy U, Sharma A, Manjunath M, Gopalakrishnan V, Retheesh ST, Javadekar SM, Choudhary B, Raghavan SC. Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt's lymphoma. J Biol Chem 2023; 299:105431. [PMID: 37926284 PMCID: PMC10704377 DOI: 10.1016/j.jbc.2023.105431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Department of Zoology, St Joseph's College, Irinjalakuda, Kerala, India
| | - S T Retheesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
3
|
Paranjape AM, Desai SS, Nishana M, Roy U, Nilavar NM, Mondal A, Kumari R, Radha G, Katapadi VK, Choudhary B, Raghavan SC. Nonamer dependent RAG cleavage at CpGs can explain mechanism of chromosomal translocations associated to lymphoid cancers. PLoS Genet 2022; 18:e1010421. [PMID: 36228010 PMCID: PMC9595545 DOI: 10.1371/journal.pgen.1010421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/25/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.
Collapse
Affiliation(s)
- Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar S. Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayilaadumveettil Nishana
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- * E-mail: (BC); (SCR)
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (BC); (SCR)
| |
Collapse
|
4
|
Depletion of RNASEH2 Activity Leads to Accumulation of DNA Double-strand Breaks and Reduced Cellular Survivability in T Cell Leukemia. J Mol Biol 2022; 434:167617. [DOI: 10.1016/j.jmb.2022.167617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
|
5
|
Javadekar SM, Yadav R, Raghavan SC. DNA structural basis for fragility at peak III of BCL2 major breakpoint region associated with t(14;18) translocation. Biochim Biophys Acta Gen Subj 2017; 1862:649-659. [PMID: 29246583 DOI: 10.1016/j.bbagen.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Maintaining genome integrity is crucial for normal cellular functions. DNA double-strand breaks (DSBs), when unrepaired, can potentiate chromosomal translocations. t(14;18) translocation involving BCL2 gene on chromosome 18 and IgH loci at chromosome 14, could lead to follicular lymphoma. Molecular basis for fragility of translocation breakpoint regions is an active area of investigation. Previously, formation of non-B DNA structures like G-quadruplex, triplex, B/A transition were investigated at peak I of BCL2 major breakpoint region (MBR); however, it is less understood at peak III. In vitro gel shift assays show faster mobility for MBR peak III sequences, unlike controls. CD studies of peak III sequences reveal a spectral pattern different from B-DNA. Although complementary C-rich stretches exhibit single-strandedness, corresponding guanine-rich sequences do not show DMS protection, ruling out G-quadruplex and triplex DNA. Extrachromosomal assay indicates that peak III halts transcription, unlike its mutated version. Taken together, multiple lines of evidence suggest formation of potential cruciform DNA structure at MBR peak III, which was also supported by in silico studies. Thus, our study reveals formation of non-B DNA structure which could be a basis for fragility at BCL2 breakpoint regions, eventually leading to chromosomal translocations.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rakhee Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
6
|
Daga A, Ansari A, Pandya M, Shah K, Patel S, Rawal R, Umrania V. Significant Role of Segmental Duplications and SIDD Sites in Chromosomal Translocations of Hematological Malignancies: A Multi-parametric Bioinformatic Analysis. Interdiscip Sci 2016; 10:467-475. [PMID: 27896663 DOI: 10.1007/s12539-016-0203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
Recurrent non-random chromosomal translocations are hallmark characteristics of leukemogenesis, and however, molecular mechanisms underlying these rearrangements are less explored. The fundamental question is, why and how chromosomes break and reunite so precisely in the genome. Meticulous understanding of mechanism leading to chromosomal rearrangement can be achieved by characterizing breakpoints. To address this hypothesis, a novel multi-parametric computational approach for characterization of major leukemic translocations within and around breakpoint region was performed. To best of our knowledge, this bioinformatic analysis is unique in finding the presence of segmental duplications (SDs) flanking breakpoints of all major leukemic translocation. Breakpoint islands (BpIs) were analyzed for stress-induced duplex destabilization (SIDD) sites along with other complex genomic architecture and physicochemical properties. Our study distinctly emphasizes on the probable correlative role of SDs, SIDD sites and various genomic features in the occurrence of breakpoints. Further, it also highlights potential features which may be playing a crucial role in causing double-strand breaks, leading to translocation.
Collapse
Affiliation(s)
- Aditi Daga
- Department of Microbiology, MVM Science College, Saurashtra University, Near Under Bridge, Kalawad Road, Rajkot, Gujarat, 360007, India
| | - Afzal Ansari
- BIT Virtual Institute of Bioinformatics (GCRI Node), GSBTM, Gandhinagar, Gujarat, India
- BIT Virtual Institute of Bioinformatics (GCRI Node), Division of Medicinal Chemistry and Pharmacogenomics, The Gujarat Cancer and Research Institute, NCH Campus, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Medha Pandya
- Department of Bioinformatics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, 364022, India
- Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, 364022, India
| | - Krupa Shah
- Division of Medicinal Chemistry and Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer and Research Institute, NCH Campus, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Shanaya Patel
- Division of Medicinal Chemistry and Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer and Research Institute, NCH Campus, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Rakesh Rawal
- Division of Medicinal Chemistry and Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer and Research Institute, NCH Campus, Asarwa, Ahmedabad, Gujarat, 380016, India.
| | - Valentina Umrania
- Department of Microbiology, MVM Science College, Saurashtra University, Near Under Bridge, Kalawad Road, Rajkot, Gujarat, 360007, India
| |
Collapse
|
7
|
Inagaki H, Kato T, Tsutsumi M, Ouchi Y, Ohye T, Kurahashi H. Palindrome-Mediated Translocations in Humans: A New Mechanistic Model for Gross Chromosomal Rearrangements. Front Genet 2016; 7:125. [PMID: 27462347 PMCID: PMC4940405 DOI: 10.3389/fgene.2016.00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
Palindromic DNA sequences, which can form secondary structures, are widely distributed in the human genome. Although the nature of the secondary structure-single-stranded "hairpin" or double-stranded "cruciform"-has been extensively investigated in vitro, the existence of such unusual non-B DNA in vivo remains controversial. Here, we review palindrome-mediated gross chromosomal rearrangements possibly induced by non-B DNA in humans. Recent advances in next-generation sequencing have not yet overcome the difficulty of palindromic sequence analysis. However, a dozen palindromic AT-rich repeat (PATRR) sequences have been identified at the breakpoints of recurrent or non-recurrent chromosomal translocations in humans. The breakages always occur at the center of the palindrome. Analyses of polymorphisms within the palindromes indicate that the symmetry and length of the palindrome affect the frequency of the de novo occurrence of these palindrome-mediated translocations, suggesting the involvement of non-B DNA. Indeed, experiments using a plasmid-based model system showed that the formation of non-B DNA is likely the key to palindrome-mediated genomic rearrangements. Some evidence implies a new mechanism that cruciform DNAs may come close together first in nucleus and illegitimately joined. Analysis of PATRR-mediated translocations in humans will provide further understanding of gross chromosomal rearrangements in many organisms.
Collapse
Affiliation(s)
- Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan; Genome and Transcriptome Analysis Center, Fujita Health UniversityToyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Makiko Tsutsumi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Yuya Ouchi
- Genome and Transcriptome Analysis Center, Fujita Health University Toyoake, Japan
| | - Tamae Ohye
- Department of Molecular Laboratory Medicine, Faculty of Medical Technology, School of Health Science, Fujita Health University Toyoake, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan; Genome and Transcriptome Analysis Center, Fujita Health UniversityToyoake, Japan
| |
Collapse
|
8
|
Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J 2015; 282:2627-45. [PMID: 25913527 DOI: 10.1111/febs.13311] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 01/11/2023]
Abstract
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Daga A, Ansari A, Rawal R, Umrania V. Characterization of chromosomal translocation breakpoint sequences in solid tumours: "an in silico analysis". Open Med Inform J 2015; 9:1-8. [PMID: 25972994 PMCID: PMC4421838 DOI: 10.2174/1874431101509010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 01/07/2023] Open
Abstract
Chromosomal translocations that results in formation and activation of fusion oncogenes are observed in numerous solid malignancies since years back. Expression of fusion kinases in these cancers drives the initiation & progression that ultimately leads to tumour development and thus comes out to be clinically imperative in terms of diagnosis and treatment of cancer. Nonetheless, molecular mechanisms beneath these translocations remained unexplored consequently limiting our knowledge of carcinogenesis and hence is the current field where further research is required. The issue of prime focus is the precision with which the chromosomes breaks and reunites within genome. Characterization of Genomic sequences located at Breakpoint region may direct us towards the thorough understanding of mechanism leading to chromosomal rearrangement. A unique computational multi-parametric analysis was performed for characterization of genomic sequence within and around breakpoint region. This study turns out to be novel as it reveals the occurrence of Segmental Duplications flanking the breakpoints of all translocation. Breakpoint Islands were also investigated for the presence of other intricate genomic architecture and various physico-chemical parameters. Our study particularly highlights the probable role of SDs and specific genomic features in precise chromosomal breakage. Additionally, it pinpoints the potential features that may be significant for double-strand breaks leading to chromosomal rearrangements.
Collapse
Affiliation(s)
- Aditi Daga
- Department of Microbiology, MVM Science College, Saurashtra University, Rajkot, Gujarat, India
| | - Afzal Ansari
- BIT Virtual Institute of Bioinformatics (GCRI Node), GSBTM, Gandhinagar, Gujarat, India
| | - Rakesh Rawal
- Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Valentina Umrania
- Department of Microbiology, MVM Science College, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
10
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
11
|
Evidence for correlation of fragile sites and chromosomal breakpoints in carriers of constitutional balanced chromosomal rearrangements. Balkan J Med Genet 2013; 14:13-6. [PMID: 24052707 PMCID: PMC3776699 DOI: 10.2478/v10034-011-0042-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A molecular cytogenetic study of 251 cases with balanced chromosomal rearrangements detected due to infertility of unclear origin or in prenatal diagnostics with a later normal outcome was done. Balanced translocations (127 cases), inversions (105 cases), insertions (three cases), balanced complex rearrangements (four cases), or derivative chromosomes leading to no imbalance (12 cases), were studied by multicolor banding (MCB) and/or subcentromeric multicolor fluorescence in situ hybridization (subcenM-FISH). Five-hundred and twenty-nine break-events were characterized by molecular cytogenetics. Only 150 of these were unique breakpoints, the remainder were observed between two and 10 times. According to the results obtained, there was cytogenetic co-localization of fragile site (FS) in ~71% of the studied 529 break-events. Nine selected cases with evidence for breakpoints within FS were further analyzed by FS-specific bacterial artificial chromosome (BAC) probes; only one did not show a co-localization. Further detailed molecular analysis will be necessary to characterize the mechanisms and genetic basis for this phenomenon.
Collapse
|
12
|
G-quadruplex structures formed at the HOX11 breakpoint region contribute to its fragility during t(10;14) translocation in T-cell leukemia. Mol Cell Biol 2013; 33:4266-81. [PMID: 24001773 DOI: 10.1128/mcb.00540-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K(+)-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.
Collapse
|
13
|
Zhabinskaya D, Benham CJ. Competitive superhelical transitions involving cruciform extrusion. Nucleic Acids Res 2013; 41:9610-21. [PMID: 23969416 PMCID: PMC3834812 DOI: 10.1093/nar/gkt733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A DNA molecule under negative superhelical stress becomes susceptible to transitions to alternate structures. The accessible alternate conformations depend on base sequence and compete for occupancy. We have developed a method to calculate equilibrium distributions among the states available to such systems, as well as their average thermodynamic properties. Here we extend this approach to include superhelical cruciform extrusion at both perfect and imperfect inverted repeat (IR) sequences. We find that short IRs do not extrude cruciforms, even in the absence of competition. But as the length of an IR increases, its extrusion can come to dominate both strand separation and B-Z transitions. Although many IRs are present in human genomic DNA, we find that extrusion-susceptible ones occur infrequently. Moreover, their avoidance of transcription start sites in eukaryotes suggests that cruciform formation is rarely involved in mechanisms of gene regulation. We examine a set of clinically important chromosomal translocation breakpoints that occur at long IRs, whose rearrangement has been proposed to be driven by cruciform extrusion. Our results show that the susceptibilities of these IRs to cruciform formation correspond closely with their observed translocation frequencies.
Collapse
Affiliation(s)
- Dina Zhabinskaya
- UC Davis Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
14
|
ZHENG JIE. Oncogenic chromosomal translocations and human cancer (Review). Oncol Rep 2013; 30:2011-9. [DOI: 10.3892/or.2013.2677] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022] Open
|
15
|
Kouzine F, Wojtowicz D, Yamane A, Resch W, Kieffer-Kwon KR, Bandle R, Nelson S, Nakahashi H, Awasthi P, Feigenbaum L, Menoni H, Hoeijmakers J, Vermeulen W, Ge H, Przytycka TM, Levens D, Casellas R. Global regulation of promoter melting in naive lymphocytes. Cell 2013; 153:988-99. [PMID: 23706737 PMCID: PMC3684982 DOI: 10.1016/j.cell.2013.04.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/31/2013] [Accepted: 04/04/2013] [Indexed: 11/25/2022]
Abstract
Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens.
Collapse
Affiliation(s)
- Fedor Kouzine
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Damian Wojtowicz
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
- Institute of Informatics, University of Warsaw, 02-098 Warsaw, Poland
| | - Arito Yamane
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Resch
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Russell Bandle
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steevenson Nelson
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotaka Nakahashi
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parirokh Awasthi
- Science Applications International Corporation, NCI, Frederick, MD 21702, USA
| | - Lionel Feigenbaum
- Science Applications International Corporation, NCI, Frederick, MD 21702, USA
| | - Herve Menoni
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Jan Hoeijmakers
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Wim Vermeulen
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Hui Ge
- Ascentgene, Inc., Rockville, MD 20850, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Casellas
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
- Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Zybailov BL, Sherpa MD, Glazko GV, Raney KD, Glazko VI. G4-quadruplexes and genome instability. Mol Biol 2013. [DOI: 10.1134/s0026893313020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Nambiar M, Raghavan SC. Chromosomal translocations among the healthy human population: implications in oncogenesis. Cell Mol Life Sci 2013; 70:1381-92. [PMID: 22948164 PMCID: PMC11113647 DOI: 10.1007/s00018-012-1135-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/04/2012] [Accepted: 08/13/2012] [Indexed: 01/01/2023]
Abstract
Chromosomal translocations are characteristic features of many cancers, especially lymphoma and leukemia. However, recent reports suggest that many chromosomal translocations can be found in healthy individuals, although the significance of this observation is still not clear. In this review, we summarize recent studies on chromosomal translocations in healthy individuals carried out in different geographical areas of the world and discuss the relevance of the observation with respect to oncogenesis.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| |
Collapse
|
18
|
Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol 2013; 20:486-94. [DOI: 10.1038/nsmb.2520] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022]
|
19
|
R/G-band boundaries: genomic instability and human disease. Clin Chim Acta 2013; 419:108-12. [PMID: 23434413 DOI: 10.1016/j.cca.2013.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/19/2023]
Abstract
The human genome is composed of large-scale compartmentalized structures resulting from variations in the amount of guanine and cytosine residues (GC%) and in the timing of DNA replication. These compartmentalized structures are related to the light- and dark-staining bands along chromosomes after the appropriate staining. Here we describe our current understanding of the biological importance of the boundaries between these light and dark bands (the so-called R/G boundaries). These R/G boundaries were identified following integration of information obtained from analyses of chromosome bands and genome sequences. This review also discusses the potential medical significance of these chromosomal regions for conditions related to genomic instability, such as cancer and neural disease. We propose that R/G-chromosomal boundaries, which correspond to regions showing a switch in replication timing from early to late S phase (early/late-switch regions) and of transition in GC%, have an extremely low number of replication origins and more non-B-form DNA structures than other genomic regions. Further, we suggest that genes located at R/G boundaries and which contain such DNA sequences have an increased risk of genetic instability and of being associated with human diseases. Finally, we propose strategies for genome and epigenome analyses based on R/G boundaries.
Collapse
|
20
|
A non-B DNA can replace heptamer of V(D)J recombination when present along with a nonamer: implications in chromosomal translocations and cancer. Biochem J 2013; 448:115-25. [PMID: 22891626 DOI: 10.1042/bj20121031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The RAG (recombination-activating gene) complex is responsible for the generation of antigen receptor diversity by acting as a sequence-specific nuclease. Recent studies have shown that it also acts as a structure-specific nuclease. However, little is known about the factors regulating this activity at the genomic level. We show in the present study that the proximity of a V(D)J nonamer to heteroduplex DNA significantly increases RAG cleavage and binding efficiencies at physiological concentrations of MgCl(2). The position of the nonamer with respect to heteroduplex DNA was important, but not orientation. A spacer length of 18 bp between the nonamer and mismatch was optimal for RAG-mediated DNA cleavage. Mutations to the sequence of the nonamer and deletion of the nonamer-binding domain of RAG1 reinforced the role of the nonamer in the enhancement in RAG cleavage. Interestingly, partial mutation of the nonamer did not significantly reduce RAG cleavage on heteroduplex DNA, suggesting that even cryptic nonamers were sufficient to enhance RAG cleavage. More importantly, we show that the fragile region involved in chromosomal translocations associated with BCL2 (B-cell lymphoma 2) can be cleaved by RAGs following a nonamer-dependent mechanism. Hence our results from the present study suggest that a non-B DNA can replace the heptamer of RSS (recombination signal sequence) when present adjacent to nonamers, explaining the generation of certain chromosomal translocations in lymphoid malignancies.
Collapse
|
21
|
Gopalakrishnan V, Raghavan SC. Sequence and structural basis for chromosomal fragility during translocations in cancer. Future Oncol 2012; 8:1121-34. [DOI: 10.2217/fon.12.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chromosomal aberration is considered to be one of the major characteristic features in many cancers. Chromosomal translocation, one type of genomic abnormality, can lead to deregulation of critical genes involved in regulating important physiological functions such as cell proliferation and DNA repair. Although chromosomal translocations were thought to be random events, recent findings suggest that certain regions in the human genome are more susceptible to breakage than others. The possibility of deviation from the usual B-DNA conformation in such fragile regions has been an active area of investigation. This review summarizes the factors that contribute towards the fragility of these regions in the chromosomes, such as DNA sequences and the role of different forms of DNA structures. Proteins responsible for chromosomal fragility, and their mechanism of action are also discussed. The effect of positioning of chromosomes within the nucleus favoring chromosomal translocations and the role of repair mechanisms are also addressed.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
22
|
Katapadi VK, Nambiar M, Raghavan SC. Potential G-quadruplex formation at breakpoint regions of chromosomal translocations in cancer may explain their fragility. Genomics 2012; 100:72-80. [PMID: 22659239 DOI: 10.1016/j.ygeno.2012.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/13/2012] [Accepted: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Genetic alterations like point mutations, insertions, deletions, inversions and translocations are frequently found in cancers. Chromosomal translocations are one of the most common genomic aberrations associated with nearly all types of cancers especially leukemia and lymphoma. Recent studies have shown the role of non-B DNA structures in generation of translocations. In the present study, using various bioinformatic tools, we show the propensity of formation of different types of altered DNA structures near translocation breakpoint regions. In particular, we find close association between occurrence of G-quadruplex forming motifs and fragile regions in almost 70% of genes involved in rearrangements in lymphoid cancers. However, such an analysis did not provide any evidence for the occurrence of G-quadruplexes at the close vicinity of translocation breakpoint regions in nonlymphoid cancers. Overall, this study will help in the identification of novel non-B DNA targets that may be responsible for generation of chromosomal translocations in cancer.
Collapse
Affiliation(s)
- Vijeth K Katapadi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India
| | | | | |
Collapse
|
23
|
Abstract
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
24
|
Naik AK, Raghavan SC. Differential reaction kinetics, cleavage complex formation, and nonamer binding domain dependence dictate the structure-specific and sequence-specific nuclease activity of RAGs. J Mol Biol 2011; 415:475-88. [PMID: 22119487 DOI: 10.1016/j.jmb.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
25
|
Onishi-Seebacher M, Korbel JO. Challenges in studying genomic structural variant formation mechanisms: The short-read dilemma and beyond. Bioessays 2011; 33:840-50. [DOI: 10.1002/bies.201100075] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Haddad D, Puget N, Laviolette-Malirat N, Conte C, Khamlichi AA. Seeking sense of antisense switch transcripts. Transcription 2011; 2:183-188. [PMID: 21922061 DOI: 10.4161/trns.2.4.16784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
In B lymphocytes, class switch recombination (CSR) machinery targets highly repetitive sequences, called switch (S) sequences, in the constant domain of the immunoglobulin heavy chain (IgH) locus. Cotranscriptional generation of R loops at S sequences provides the substrate for the mutagenic enzyme AID (Activation-Induced cytidine Deaminase), which initiates the DNA breaks at the transcribed sequences. Both sense and antisense transcripts across the S regions have been reported. Our recent work shows that, unlike its sense counterpart, antisense transcription of S sequences is dispensable for CSR in vivo.
Collapse
Affiliation(s)
- Dania Haddad
- CNRS UMR 5089-IPBS (Institut de Pharmacologie et de Biologie Structurale) and Université Paul Sabatier III; Equipe "Instabilité Génétique et Régulation Transcriptionnelle"; Université de Toulouse; Toulouse, France
| | | | | | | | | |
Collapse
|
27
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
28
|
Broxson C, Beckett J, Tornaletti S. Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene. Biochemistry 2011; 50:4162-72. [PMID: 21469677 DOI: 10.1021/bi2002136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non canonical DNA structures correspond to genomic regions particularly susceptible to genetic instability. The transcription process facilitates formation of these structures and plays a major role in generating the instability associated with these genomic sites. However, little is known about how non canonical structures are processed when encountered by an elongating RNA polymerase. Here we have studied the behavior of T7 RNA polymerase (T7RNAP) when encountering a G quadruplex forming-(GGA)(4) repeat located in the human c-myb proto-oncogene. To make direct correlations between formation of the structure and effects on transcription, we have taken advantage of the ability of the T7 polymerase to transcribe single-stranded substrates and of G4 DNA to form in single-stranded G-rich sequences in the presence of potassium ions. Under physiological KCl concentrations, we found that T7 RNAP transcription was arrested at two sites that mapped to the c-myb (GGA)(4) repeat sequence. The extent of arrest did not change with time, indicating that the c-myb repeat represented an absolute block and not a transient pause to T7 RNAP. Consistent with G4 DNA formation, arrest was not observed in the absence of KCl or in the presence of LiCl. Furthermore, mutations in the c-myb (GGA)(4) repeat, expected to prevent transition to G4, also eliminated the transcription block. We show T7 RNAP arrest at the c-myb repeat in double-stranded DNA under conditions mimicking the cellular concentration of biomolecules and potassium ions, suggesting that the G4 structure formed in the c-myb repeat may represent a transcription roadblock in vivo. Our results support a mechanism of transcription-coupled DNA repair initiated by arrest of transcription at G4 structures.
Collapse
Affiliation(s)
- Christopher Broxson
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine and UF Genetics Institute, Gainesville, Florida 32610, United States
| | | | | |
Collapse
|
29
|
Gajecka M, Saitta SC, Gentles AJ, Campbell L, Ciprero K, Geiger E, Catherwood A, Rosenfeld JA, Shaikh T, Shaffer LG. Recurrent interstitial 1p36 deletions: Evidence for germline mosaicism and complex rearrangement breakpoints. Am J Med Genet A 2011; 152A:3074-83. [PMID: 21108392 DOI: 10.1002/ajmg.a.33733] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deletions of chromosome 1p36 are one of the most frequently encountered subtelomeric alterations. Clinical features of monosomy 1p36 include neurocognitive impairment, hearing loss, seizures, cardiac defects, and characteristic facial features. The majority of cases have occurred sporadically, implying that genomic instability plays a role in the prevalence of the syndrome. Here, we report two siblings with mild phenotypic features of the deletion syndrome, including developmental delay, hearing loss, and left ventricular non-compaction (LVNC). Microarray analysis using bacterial artificial chromosome and oligonucleotide microarrays indicated the deletions were identical, suggesting germline mosaicism. Parental phenotypes were normal, and analysis by fluorescence in situ hybridization (FISH) did not show mosaicism. These small interstitial deletions were not detectable by conventional subtelomeric FISH analysis. To investigate the mechanism of deletion further, the breakpoints were cloned and sequenced, demonstrating the presence of a complex rearrangement. Sequence analysis of genes in the deletion interval did not reveal any mutations on the intact homologue that may have contributed to the LVNC seen in both children. This is the first report of apparent germline mosaicism for this disorder. Thus, our findings have important implications for diagnostic approaches and for recurrence risk counseling in families with a child with monosomy 1p36. In addition, our results further refine the minimal critical region for LVNC and hearing loss.
Collapse
Affiliation(s)
- Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mani RS, Chinnaiyan AM. Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nat Rev Genet 2010; 11:819-29. [PMID: 21045868 DOI: 10.1038/nrg2883] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genomic rearrangements are associated with many human genomic disorders, including cancers. It was previously thought that most genomic rearrangements formed randomly but emerging data suggest that many are nonrandom, cell type-, cell stage- and locus-specific events. Recent studies have revealed novel cellular mechanisms and environmental cues that influence genomic rearrangements. In this Review, we consider the multitude of influences on genomic rearrangements by grouping these influences into four categories: proximity of chromosomal regions in the nucleus, cellular stress, inappropriate DNA repair or recombination, and DNA sequence and chromatin features. The synergy of these triggers can poise a cell for rearrangements and here we aim to provide a conceptual framework for understanding the genesis of genomic rearrangements.
Collapse
Affiliation(s)
- Ram-Shankar Mani
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, 48109, USA
| | | |
Collapse
|
31
|
Novel rhodanine derivatives induce growth inhibition followed by apoptosis. Bioorg Med Chem Lett 2010; 20:6297-301. [DOI: 10.1016/j.bmcl.2010.08.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/27/2010] [Accepted: 08/18/2010] [Indexed: 11/17/2022]
|
32
|
Chung WC, Jung SH, Lee KM, Paik CN, Kwak JW, Jung JH, Yoo JY, Lee MK, Chung IS. Genetic instability in gastric epithelial neoplasias categorized by the revised vienna classification. Gut Liver 2010; 4:179-85. [PMID: 20559519 DOI: 10.5009/gnl.2010.4.2.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/27/2009] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS The aim of this study was to determine the structural chromosomal aberrations, such as loss of heterozygosity (LOH) and microsatellite instability (MSI), at multiple tumor suppressor gene loci in gastric epithelial neoplasia categorized by the revised Vienna classification. METHODS All tissue samples were excised by endoscopic mucosal resection. Sixty category 3 (low-grade adenoma) tissue samples and 51 category 4 samples (high-grade adenoma and intramucosal carcinoma with adenoma) were examined at the 7 sets of microsatellite loci linked to the tumor suppressor gene locus. RESULTS For category 3 and 4 tissue samples, there were no differences in the frequencies of LOH-positive chromosomes or the extent of chromosomal loss. The Helicobacter-pylori (H. pylori)-positive rate was significantly higher in MSI-positive category 4 samples than in category 3 samples (p=0.04). The frequency of MSI positivity was significantly higher in category 4 samples than in category 3 samples (p=0.003). CONCLUSIONS H. pylori infection is associated with genetic instability of the premalignant lesion. MSI occurs in the early stages of gastric carcinogenesis and its occurrence increases during malignant transformation. Detection of MSI in premalignant gastric lesions may be a surveillant of risk of malignant transformation.
Collapse
Affiliation(s)
- Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, College of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mancuso M, Sammarco MC, Grabczyk E. Transposon Tn7 preferentially inserts into GAA*TTC triplet repeats under conditions conducive to Y*R*Y triplex formation. PLoS One 2010; 5:e11121. [PMID: 20559546 PMCID: PMC2886061 DOI: 10.1371/journal.pone.0011121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/21/2010] [Indexed: 11/26/2022] Open
Abstract
Background Expansion of an unstable GAA•TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Structure formation by the repeat has been implicated in both frataxin repression and GAA•TTC instability. The GAA•TTC sequence is capable of adopting multiple non-B DNA structures including Y•R•Y and R•R•Y triplexes. Lower pH promotes the formation of Y•R•Y triplexes by GAA•TTC. Here we used the bacterial transposon Tn7 as an in vitro tool to probe whether GAA•TTC repeats can attract a well-characterized recombinase. Methodology/Principal Findings Tn7 showed a pH-dependent preference for insertion into uninterrupted regions of a Friedreich ataxia patient-derived repeat, inserting 48, 39 and 14 percent of the time at pH 7, pH 8 and pH 9, respectively. Moreover, Tn7 also showed orientation and region specific insertion within the repeat at pH 7 and pH 8, but not at pH 9. In contrast, transposon Tn5 showed no strong preference for or against the repeat during in vitro transposition at any pH tested. Y•R•Y triplex formation was reduced in predictable ways by transposon interruption of the GAA•TTC repeat. However, transposon interruptions in the GAA•TTC repeats did not increase the in vitro transcription efficiency of the templates. Conclusions/Significance We have demonstrated that transposon Tn7 will recognize structures that form spontaneously in GAA•TTC repeats and insert in a specific orientation within the repeat. The conditions used for in vitro transposition span the physiologically relevant range suggesting that long GAA•TTC repeats can form triplex structures in vivo, attracting enzymes involved in DNA repair, recombination and chromatin modification.
Collapse
Affiliation(s)
- Miriam Mancuso
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | | | | |
Collapse
|
34
|
Chen JM, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP. Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 2010; 20:222-33. [PMID: 20541013 DOI: 10.1016/j.semcancer.2010.05.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/22/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Genomic rearrangements in inherited disease and cancer involve gross alterations of chromosomes or large chromosomal regions and can take the form of deletions, duplications, insertions, inversions or translocations. The characterization of a considerable number of rearrangement breakpoints has now been accomplished at the nucleotide sequence level, thereby providing an invaluable resource for the detailed study of the mutational mechanisms which underlie genomic recombination events. A better understanding of these mutational mechanisms is vital for improving the design of mutation detection strategies. At least five categories of mutational mechanism are known to give rise to genomic rearrangements: (i) homologous recombination including non-allelic homologous recombination (NAHR), gene conversion, single strand annealing (SSA) and break-induced replication (BIR), (ii) non-homologous end joining (NHEJ), (iii) microhomology-mediated replication-dependent recombination (MMRDR), (iv) long interspersed element-1 (LINE-1 or L1)-mediated retrotransposition and (v) telomere healing. Focussing on the first three of these general mechanisms, we compare and contrast their hallmark characteristics, and discuss the role of various local DNA sequence features (e.g. recombination-promoting motifs, repetitive sequences and sequences capable of non-B DNA formation) in mediating the recombination events that underlie gross genomic rearrangements. Finally, we explore how studies both at the level of the gene (using the neurofibromatosis type-1 gene as an example) and the whole genome (using data derived from cancer genome sequencing studies) are shaping our understanding of the impact of genomic rearrangements as a cause of human genetic disease.
Collapse
Affiliation(s)
- Jian-Min Chen
- Etablissement Français du Sang (EFS) - Bretagne, Brest, France.
| | | | | | | | | |
Collapse
|
35
|
Chiruvella KK, Raghavan SC. A natural compound, methyl angolensate, induces mitochondrial pathway of apoptosis in Daudi cells. Invest New Drugs 2010; 29:583-92. [PMID: 20169399 DOI: 10.1007/s10637-010-9393-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/18/2010] [Indexed: 12/14/2022]
Abstract
Natural products discovered from medicinal plants have played an important role in the treatment of cancer. In an effort to identify novel small molecules which can affect the proliferation of lymphoma cells, we tested methyl angolensate (MA), a plant derived tetranortriterpenoid, purified from the crude extract of the root callus of Soymida febrifuga commonly known as Indian red wood tree. We have tested MA for its cytotoxic properties on Burkitt's lymphoma cell lines, using various cellular assays. We observed that MA induces cytotoxicity in Daudi cells in a dose-dependent manner using trypan blue, MTT and LDH assays. We find that the treatment with MA led to activation of DNA double-strand break repair proteins including KU70 and KU80, suggesting the activation of nonhomologous DNA end joining pathway in surviving cells. Further, we find that methyl angolensate could induce apoptosis by cell cycle analysis, annexin V-FITC staining, DNA fragmentation and PARP cleavage. Besides, MA treatment led to reactive oxygen species generation and loss of mitochondrial transmembrane potential. These results suggest the activation of mitochondrial pathway of apoptosis. Hence, we identify MA as a potential chemotherapeutic agent against Daudi cells.
Collapse
Affiliation(s)
- Kishore K Chiruvella
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
36
|
Gericke GS. Common chromosomal fragile sites (CFS) may be involved in normal and traumatic cognitive stress memory consolidation and altered nervous system immunity. Med Hypotheses 2010; 74:911-8. [PMID: 20138440 DOI: 10.1016/j.mehy.2009.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/18/2022]
Abstract
Previous reports of specific patterns of increased fragility at common chromosomal fragile sites (CFS) found in association with certain neurobehavioural disorders did not attract attention at the time due to a shift towards molecular approaches to delineate neuropsychiatric disorder candidate genes. Links with miRNA, altered methylation and the origin of copy number variation indicate that CFS region characteristics may be part of chromatinomic mechanisms that are increasingly linked with neuroplasticity and memory. Current reports of large-scale double-stranded DNA breaks in differentiating neurons and evidence of ongoing DNA demethylation of specific gene promoters in adult hippocampus may shed new light on the dynamic epigenetic changes that are increasingly appreciated as contributing to long-term memory consolidation. The expression of immune recombination activating genes in key stress-induced memory regions suggests the adoption by the brain of this ancient pattern recognition and memory system to establish a structural basis for long-term memory through controlled chromosomal breakage at highly specific genomic regions. It is furthermore considered that these mechanisms for management of epigenetic information related to stress memory could be linked, in some instances, with the transfer of the somatically acquired information to the germline. Here, rearranged sequences can be subjected to further selection and possible eventual retrotranscription to become part of the more stable coding machinery if proven to be crucial for survival and reproduction. While linkage of cognitive memory with stress and fear circuitry and memory establishment through structural DNA modification is proposed as a normal process, inappropriate activation of immune-like genomic rearrangement processes through traumatic stress memory may have the potential to lead to undesirable activation of neuro-inflammatory processes. These theories could have a significant impact on the interpretation of risks posed by heredity and the environment and the search for neuropsychiatric candidate genes.
Collapse
Affiliation(s)
- G S Gericke
- Department of Biomedical Sciences, Tshwane University of Technology, Brooklyn Square, Pretoria, Gauteng, South Africa.
| |
Collapse
|
37
|
Shahabuddin MS, Nambiar M, Moorthy BT, Naik PL, Choudhary B, Advirao GM, Raghavan SC. A novel structural derivative of natural alkaloid ellipticine, MDPSQ, induces necrosis in leukemic cells. Invest New Drugs 2010; 29:523-33. [DOI: 10.1007/s10637-009-9379-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/17/2009] [Indexed: 11/24/2022]
|
38
|
Naik AK, Lieber MR, Raghavan SC. Cytosines, but not purines, determine recombination activating gene (RAG)-induced breaks on heteroduplex DNA structures: implications for genomic instability. J Biol Chem 2010; 285:7587-97. [PMID: 20051517 DOI: 10.1074/jbc.m109.089631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose "C((d))C((S))C((S))" (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
39
|
Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 2010; 67:43-62. [PMID: 19727556 PMCID: PMC3017512 DOI: 10.1007/s00018-009-0131-2] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/22/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
Abstract
Repetitive DNA motifs are abundant in the genomes of various species and have the capacity to adopt non-canonical (i.e., non-B) DNA structures. Several non-B DNA structures, including cruciforms, slipped structures, triplexes, G-quadruplexes, and Z-DNA, have been shown to cause mutations, such as deletions, expansions, and translocations in both prokaryotes and eukaryotes. Their distributions in genomes are not random and often co-localize with sites of chromosomal breakage associated with genetic diseases. Current genome-wide sequence analyses suggest that the genomic instabilities induced by non-B DNA structure-forming sequences not only result in predisposition to disease, but also contribute to rapid evolutionary changes, particularly in genes associated with development and regulatory functions. In this review, we describe the occurrence of non-B DNA-forming sequences in various species, the classes of genes enriched in non-B DNA-forming sequences, and recent mechanistic studies on DNA structure-induced genomic instability to highlight their importance in genomes.
Collapse
Affiliation(s)
- Junhua Zhao
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Albino Bacolla
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Guliang Wang
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| |
Collapse
|
40
|
Lieber MR, Gu J, Lu H, Shimazaki N, Tsai AG. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem 2010; 50:279-96. [PMID: 20012587 DOI: 10.1007/978-90-481-3471-7_14] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Double-strand breaks (DSBs) arise in dividing cells about ten times per cell per day. Causes include replication across a nick, free radicals of oxidative metabolism, ionizing radiation, and inadvertent action by enzymes of DNA metabolism (such as failures of type II topoisomerases or cleavage by recombinases at off-target sites). There are two major double-strand break repair pathways. Homologous recombination (HR) can repair double-strand breaks, but only during S phase and typically only if there are hundreds of base pairs of homology. The more commonly used pathway is nonhomologous DNA end joining, abbreviated NHEJ. NHEJ can repair a DSB at any time during the cell cycle and does not require any homology, although a few nucleotides of terminal microhomology are often utilized by the NHEJ enzymes, if present. The proteins and enzymes of NHEJ include Ku, DNA-PKcs, Artemis, DNA polymerase mu (Pol micro), DNA polymerase lambda (Pol lambda), XLF (also called Cernunnos), XRCC4, and DNA ligase IV. These enzymes constitute what some call the classical NHEJ pathway, and in wild type cells, the vast majority of joining events appear to proceed using these components. NHEJ is present in many prokaryotes, as well as all eukaryotes, and very similar mechanistic flexibility evolved both convergently and divergently. When two double-strand breaks occur on different chromosomes, then the rejoining is almost always done by NHEJ. The causes of DSBs in lymphomas most often involve the RAG or AID enzymes that function in the specialized processes of antigen receptor gene rearrangement.
Collapse
Affiliation(s)
- Michael R Lieber
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089-9176, USA.
| | | | | | | | | |
Collapse
|
41
|
Prevalence and analysis of t(14;18) and t(11;14) chromosomal translocations in healthy Indian population. Ann Hematol 2009; 89:35-43. [PMID: 19488754 DOI: 10.1007/s00277-009-0755-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
|
42
|
Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes. Chromosome Res 2009; 17:469-83. [PMID: 19475482 DOI: 10.1007/s10577-009-9039-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/08/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Submicroscopic inversions have contributed significantly to the genomic divergence between humans and chimpanzees over evolutionary time. Those microinversions which are flanked by segmental duplications (SDs) are presumed to have originated via non-allelic homologous recombination between SDs arranged in inverted orientation. However, the nature of the mechanisms underlying those inversions which are not flanked by SDs remains unclear. We have investigated 35 such inversions, ranging in size from 51-nt to 22056-nt, with the goal of characterizing the DNA sequences in the breakpoint-flanking regions. Using the macaque genome as an outgroup, we determined the lineage specificity of these inversions and noted that the majority (N = 31; 89%) were associated with deletions (of length between 1-nt and 6754-nt) immediately adjacent to one or both inversion breakpoints. Overrepresentations of both direct and inverted repeats, >or= 6-nt in length and capable of non-B DNA structure formation, were noted in the vicinity of breakpoint junctions suggesting that these repeats could have contributed to double strand breakage. Inverted repeats capable of cruciform structure formation were also found to be a common feature of the inversion breakpoint-flanking regions, consistent with these inversions having originated through the resolution of Holliday junction-like cruciforms. Sequences capable of non-B DNA structure formation have previously been implicated in promoting gross deletions and translocations causing human genetic disease. We conclude that non-B DNA forming sequences may also have promoted the occurrence of mutations in an evolutionary context, giving rise to at least some of the inversion/deletions which now serve to distinguish the human and chimpanzee genomes.
Collapse
|
43
|
|
44
|
Kavitha C, Nambiar M, Ananda Kumar C, Choudhary B, Muniyappa K, Rangappa KS, Raghavan SC. Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem Pharmacol 2009; 77:348-63. [DOI: 10.1016/j.bcp.2008.10.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/30/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
|
45
|
Leaky severe combined immunodeficiency and aberrant DNA rearrangements due to a hypomorphic RAG1 mutation. Blood 2009; 113:2965-75. [PMID: 19126872 DOI: 10.1182/blood-2008-07-165167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAG1/2 endonuclease initiates programmed DNA rearrangements in progenitor lymphocytes by generating double-strand breaks at specific recombination signal sequences. This process, known as V(D)J recombination, assembles the vastly diverse antigen receptor genes from numerous V, D, and J coding segments. In vitro biochemical and cellular transfection studies suggest that RAG1/2 may also play postcleavage roles by forming complexes with the recombining ends to facilitate DNA end processing and ligation. In the current study, we examine the in vivo consequences of a mutant form of RAG1, RAG1-S723C, that is proficient for DNA cleavage, yet exhibits defects in postcleavage complex formation and end joining in vitro. We generated a knockin mouse model harboring the RAG1-S723C hypomorphic mutation and examined the immune system in this fully in vivo setting. RAG1-S723C homozygous mice exhibit impaired lymphocyte development and decreased V(D)J rearrangements. Distinct from RAG nullizygosity, the RAG1-S723C hypomorph results in aberrant DNA double-strand breaks within rearranging loci. RAG1-S723C also predisposes to thymic lymphomas associated with chromosomal translocations in a p53 mutant background, and heterozygosity for the mutant allele accelerates age-associated immune system dysfunction. Thus, our study provides in vivo evidence that implicates aberrant RAG1/2 activity in lymphoid tumor development and premature immunosenescence.
Collapse
|
46
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
47
|
Mahowald GK, Baron JM, Sleckman BP. Collateral damage from antigen receptor gene diversification. Cell 2008; 135:1009-12. [PMID: 19070571 DOI: 10.1016/j.cell.2008.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chromosomal translocations that juxtapose antigen receptor genes and oncogenes are frequently associated with lymphoid malignancies. In this issue, Robbiani et al. (2008) show that activation-induced deaminase (AID), an enzyme involved in antigen receptor gene diversification, generates DNA double-strand breaks (DSBs) in oncogenes, and Tsai et al. (2008) propose that AID and the recombinase-activating gene (RAG) endonuclease may collaborate to generate off-target DSBs.
Collapse
Affiliation(s)
- Grace K Mahowald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
48
|
Chiruvella KK, Kari V, Choudhary B, Nambiar M, Ghanta RG, Raghavan SC. Methyl angolensate, a natural tetranortriterpenoid induces intrinsic apoptotic pathway in leukemic cells. FEBS Lett 2008; 582:4066-76. [DOI: 10.1016/j.febslet.2008.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/01/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
49
|
Gajecka M, Gentles AJ, Tsai A, Chitayat D, Mackay KL, Glotzbach CD, Lieber MR, Shaffer LG. Unexpected complexity at breakpoint junctions in phenotypically normal individuals and mechanisms involved in generating balanced translocations t(1;22)(p36;q13). Genome Res 2008; 18:1733-42. [PMID: 18765821 DOI: 10.1101/gr.077453.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Approximately one in 500 individuals carries a reciprocal translocation. Balanced translocations are usually associated with a normal phenotype unless the translocation breakpoints disrupt a gene(s) or cause a position effect. We investigated breakpoint junctions at the sequence level in phenotypically normal balanced translocation carriers. Eight breakpoint junctions derived from four nonrelated subjects with apparently balanced translocation t(1;22)(p36;q13) were examined. Additions of nucleotides, deletions, duplications, and a triplication identified at the breakpoints demonstrate high complexity at the breakpoint junctions and indicate involvement of multiple mechanisms in the DNA breakage and repair process during translocation formation. Possible detailed nonhomologous end-joining scenarios for t(1;22) cases are presented. We propose that cryptic imbalances in phenotypically normal, balanced translocation carriers may be more common than currently appreciated.
Collapse
Affiliation(s)
- Marzena Gajecka
- School of Molecular Biosciences, Washington State University, Spokane, Washington 99202, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nambiar M, Choudhary B, Rao CR, Raghavan SC. Amplification of chromosomal translocation junctions from paraffin-embedded tissues of follicular lymphoma patients. Biomed Mater 2008; 3:034103. [DOI: 10.1088/1748-6041/3/3/034103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|