1
|
Schüle KM, Weckerle J, Probst S, Wehmeyer AE, Zissel L, Schröder CM, Tekman M, Kim GJ, Schlägl IM, Sagar, Arnold SJ. Eomes restricts Brachyury functions at the onset of mouse gastrulation. Dev Cell 2023; 58:1627-1642.e7. [PMID: 37633271 DOI: 10.1016/j.devcel.2023.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Mammalian specification of mesoderm and definitive endoderm (DE) is instructed by the two related Tbx transcription factors (TFs) Eomesodermin (Eomes) and Brachyury sharing partially redundant functions. Gross differences in mutant embryonic phenotypes suggest specific functions of each TF. To date, the molecular details of separated lineage-specific gene regulation by Eomes and Brachyury remain poorly understood. Here, we combine mouse embryonic and stem-cell-based analyses to delineate the non-overlapping, lineage-specific transcriptional activities. On a genome-wide scale, binding of both TFs overlaps at promoters of target genes but shows specificity for distal enhancer regions that is conferred by differences in Tbx DNA-binding motifs. The unique binding to enhancer sites instructs the specification of anterior mesoderm (AM) and DE by Eomes and caudal mesoderm by Brachyury. Remarkably, EOMES antagonizes BRACHYURY gene regulatory functions in coexpressing cells during early gastrulation to ensure the proper sequence of early AM and DE lineage specification followed by posterior mesoderm derivatives.
Collapse
Affiliation(s)
- Katrin M Schüle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany.
| | - Jelena Weckerle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Alexandra E Wehmeyer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Lea Zissel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Chiara M Schröder
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany
| | - Mehmet Tekman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Inga-Marie Schlägl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany.
| |
Collapse
|
2
|
Vetrova AA, Kupaeva DM, Kizenko A, Lebedeva TS, Walentek P, Tsikolia N, Kremnyov SV. The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Sci Rep 2023; 13:9382. [PMID: 37296138 PMCID: PMC10256749 DOI: 10.1038/s41598-023-35979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Brachyury, a member of T-box gene family, is widely known for its major role in mesoderm specification in bilaterians. It is also present in non-bilaterian metazoans, such as cnidarians, where it acts as a component of an axial patterning system. In this study, we present a phylogenetic analysis of Brachyury genes within phylum Cnidaria, investigate differential expression and address a functional framework of Brachyury paralogs in hydrozoan Dynamena pumila. Our analysis indicates two duplication events of Brachyury within the cnidarian lineage. The first duplication likely appeared in the medusozoan ancestor, resulting in two copies in medusozoans, while the second duplication arose in the hydrozoan ancestor, resulting in three copies in hydrozoans. Brachyury1 and 2 display a conservative expression pattern marking the oral pole of the body axis in D. pumila. On the contrary, Brachyury3 expression was detected in scattered presumably nerve cells of the D. pumila larva. Pharmacological modulations indicated that Brachyury3 is not under regulation of cWnt signaling in contrast to the other two Brachyury genes. Divergence in expression patterns and regulation suggest neofunctionalization of Brachyury3 in hydrozoans.
Collapse
Affiliation(s)
- Alexandra A Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Vavilova 26, Moscow, 119334, Russia
| | - Daria M Kupaeva
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1/12, Moscow, 119234, Russia
| | - Alena Kizenko
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Tatiana S Lebedeva
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Peter Walentek
- Renal Division, Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37085, Göttingen, Germany
| | - Stanislav V Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Vavilova 26, Moscow, 119334, Russia.
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1/12, Moscow, 119234, Russia.
| |
Collapse
|
3
|
A mathematical model of the biochemical network underlying left-right asymmetry establishment in mammals. Biosystems 2018; 173:281-297. [PMID: 30292532 DOI: 10.1016/j.biosystems.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022]
Abstract
The expression of the TGF-β protein Nodal on the left side of vertebrate embryos is a determining event in the development of internal-organ asymmetry. We present a mathematical model for the control of the expression of Nodal and its antagonist Lefty consisting entirely of realistic elementary reactions. We analyze the model in the absence of Lefty and find a wide range of parameters over which bistability (two stable steady states) is observed, with one stable steady state a low-Nodal state corresponding to the right-hand developmental fate, and the other a high-Nodal state corresponding to the left. We find that bistability requires a transcription factor containing two molecules of phosphorylated Smad2. A numerical survey of the full model, including Lefty, shows the effects of Lefty on the potential for bistability, and on the conditions that lead to the system reaching one or the other steady state.
Collapse
|
4
|
Hertzler PL, Wei J, Droste AP, Yuan J, Xiang J. Penaeid shrimp brachyury: sequence analysis and expression during gastrulation. Dev Genes Evol 2018; 228:219-225. [PMID: 30121809 DOI: 10.1007/s00427-018-0618-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
Gastrulation occurs by a variety of morphogenetic movements, often correlated with diverse expression of the T-box transcription factor Brachyury (Bra). Bra may be expressed in ectoderm, mesoderm, or endoderm, but its role in cell fate specification or regulation of gastrulation movements has not been studied in the development of crustaceans. Penaeid shrimp (Decapoda: Dendrobranchiata: Penaeidae) develop by complete cleavage and gastrulation by invagination to a free-swimming nauplius larva. Penaeid gastrulation diverges from other decapods and from insects, occurring early at a low cell number with the formation of a radial invagination. Toward a better understanding of gastrulation movements in penaeid shrimp, bra was identified from newly available penaeid shrimp genomes and transcriptomes of Litopenaeus vannamei, Marsupenaeus japonicus, and Penaeus monodon. Additional bra homologs were obtained from the outgroups Sicyonia ingentis (Decapoda: Dendrobranchiata: Sicyoniidae) and the caridean shrimp Caridina multidentata (Decapoda: Pleocymata). The genes encoded penaeid shrimp Bra proteins of 551-552 amino acids, containing the highly conserved T-box DNA-binding region. The N-terminal Smad1-binding domain, conserved in most animals, was absent in shrimp Bra. The R1 repressor domain was the best conserved of the C-terminal regulatory domains, which were widely divergent compared to other species. The penaeid shrimp bra gene consisted of six exons, with splice sites conserved with other phyla across the animal kingdom. Real-time qPCR and FPKM analysis showed that shrimp bra mRNA was strongly expressed during gastrulation. These findings begin to address the evolution of gastrulation in shrimp at the molecular level.
Collapse
Affiliation(s)
- Philip L Hertzler
- Department of Biology, Central Michigan University, Biosciences 2100, Mount Pleasant, MI, 48858, USA.
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Andrew P Droste
- Department of Biology, Central Michigan University, Biosciences 2100, Mount Pleasant, MI, 48858, USA
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
5
|
Xbra and Smad-1 cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. Sci Rep 2018; 8:11391. [PMID: 30061699 PMCID: PMC6065435 DOI: 10.1038/s41598-018-29740-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023] Open
Abstract
Crosstalk of signaling pathways play crucial roles in cell proliferation, cell differentiation, and cell fate determination for development. In the case of ventx1.1 in Xenopus embryos, both BMP-4/Smad-1 and FGF/Xbra signaling induce the expression of neural repressor ventx1.1. However, the details of how these two pathways interact and lead to neural inhibition by ventx1.1 remain largely unknown. In the present study, Xbra directly bound to the ventx1.1 promoter region and inhibited neurogenesis in a Ventx1.1-dependent manner. Furthermore, Smad-1 and Xbra physically interacted and regulated ventx1.1 transcription in a synergistic fashion. Xbra and Smad-1 interaction cooperatively enhanced the binding of an interacting partner within the ventx1.1 promoter and maximum cooperation was achieved in presence of intact DNA binding sites for both Smad-1 and Xbra. Collectively, BMP-4/Smad-1 and FGF/Xbra signal crosstalk cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. This suggests that the crosstalk between BMP-4 and FGF signaling negatively regulates early neurogenesis by synergistic activation of ventx1.1 in Xenopus embryos.
Collapse
|
6
|
Sebé-Pedrós A, Ruiz-Trillo I. Evolution and Classification of the T-Box Transcription Factor Family. Curr Top Dev Biol 2017; 122:1-26. [DOI: 10.1016/bs.ctdb.2016.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Faial T, Bernardo AS, Mendjan S, Diamanti E, Ortmann D, Gentsch GE, Mascetti VL, Trotter MWB, Smith JC, Pedersen RA. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells. Development 2015; 142:2121-35. [PMID: 26015544 PMCID: PMC4483767 DOI: 10.1242/dev.117838] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Abstract
The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments.
Collapse
Affiliation(s)
- Tiago Faial
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Andreia S Bernardo
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sasha Mendjan
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Evangelia Diamanti
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Ortmann
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - George E Gentsch
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Victoria L Mascetti
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Matthew W B Trotter
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James C Smith
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Roger A Pedersen
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
8
|
Evren S, Wen JWH, Luu O, Damm EW, Nagel M, Winklbauer R. EphA4-dependent Brachyury expression is required for dorsal mesoderm involution in the Xenopus gastrula. Development 2014; 141:3649-61. [PMID: 25209247 DOI: 10.1242/dev.111880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Xenopus provides a well-studied model of vertebrate gastrulation, but a central feature, the movement of the mesoderm to the interior of the embryo, has received little attention. Here, we analyze mesoderm involution at the Xenopus dorsal blastopore lip. We show that a phase of rapid involution - peak involution - is intimately linked to an early stage of convergent extension, which involves differential cell migration in the prechordal mesoderm and a new movement of the chordamesoderm, radial convergence. The latter process depends on Xenopus Brachyury, the expression of which at the time of peak involution is controlled by signaling through the ephrin receptor, EphA4, its ligand ephrinB2 and its downstream effector p21-activated kinase. Our findings support a conserved role for Brachyury in blastopore morphogenesis.
Collapse
Affiliation(s)
- Sevan Evren
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Jason W H Wen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Erich W Damm
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
9
|
Abstract
Developmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusively present in metazoans. Here, we report the presence of T-box genes in several nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that Brachyury is the most ancient member of the T-box family and establish that the T-box family diversified at the onset of Metazoa. Moreover, we demonstrate functional conservation of a homolog of Brachyury of the protist Capsaspora owczarzaki in Xenopus laevis. By comparing the molecular phenotype of C. owczarzaki Brachyury with that of homologs of early branching metazoans, we define a clear difference between unicellular holozoan and metazoan Brachyury homologs, suggesting that the specificity of Brachyury emerged at the origin of Metazoa. Experimental determination of the binding preferences of the C. owczarzaki Brachyury results in a similar motif to that of metazoan Brachyury and other T-box classes. This finding suggests that functional specificity between different T-box classes is likely achieved by interaction with alternative cofactors, as opposed to differences in binding specificity.
Collapse
|
10
|
From notochord formation to hereditary chordoma: the many roles of Brachyury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826435. [PMID: 23662285 PMCID: PMC3626178 DOI: 10.1155/2013/826435] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 12/25/2022]
Abstract
Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are both sporadic and hereditary and appear to occur more frequently after the fourth decade of life; however, modern technologies have increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma etiogenesis.
Collapse
|
11
|
Affiliation(s)
- Nori Satoh
- Marine Genomics Unit; Okinawa Institute of Science and Technology; Onna Okinawa 904-0495 Japan
| | - Kuni Tagawa
- Marine Biological Laboratory; Graduate School of Science; Hiroshima University; Mukaishima Hiroshima 722-0073 Japan
| | - Hiroki Takahashi
- Division of Developmental Biology; National Institute of Basic Biology; Okagaki Aichi 445-8585 Japan
| |
Collapse
|
12
|
Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 2008; 456:382-6. [PMID: 18806777 DOI: 10.1038/nature07309] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 08/01/2008] [Indexed: 11/08/2022]
Abstract
Most bilaterian animals possess a through gut with a separate mouth and anus. It is commonly believed that during the transition from radial to bilateral symmetry, both openings evolved simultaneously by the lateral closure of a slit-like blastopore. Molecular phylogenies however, place the acoel flatworms, which have only one opening to their digestive system, as the sister group to all remaining Bilateria. To address how this single body opening is related to the mouth and anus of the protostomes and deuterostomes, we studied the expression of genes involved in bilaterian foregut and hindgut patterning during the development of the acoel Convolutriloba longifissura. Here we show that the genes brachyury and goosecoid are expressed in association with the acoel mouth, suggesting that this single opening is homologous to the mouth of other bilaterians. In addition, we find that the genes caudal, orthopedia and brachyury-which are expressed in various bilaterian hindguts-are expressed in a small region at the posterior end of the animal, separated from the anterior oral brachyury-expressing region by a dorsal domain of ectodermal bmp2/4 expression. These results contradict the hypothesis that the bilaterian mouth and anus evolved simultaneously from a common blastoporal opening, and suggest that a through gut might have evolved independently in different animal lineages.
Collapse
|
13
|
Copley RR. The animal in the genome: comparative genomics and evolution. Philos Trans R Soc Lond B Biol Sci 2008; 363:1453-61. [PMID: 18192189 PMCID: PMC2614226 DOI: 10.1098/rstb.2007.2235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comparisons between completely sequenced metazoan genomes have generally emphasized how similar their encoded protein content is, even when the comparison is between phyla. Given the manifest differences between phyla and, in particular, intuitive notions that some animals are more complex than others, this creates something of a paradox. Simplistic explanations have included arguments such as increased numbers of genes; greater numbers of protein products produced through alternative splicing; increased numbers of regulatory non-coding RNAs and increased complexity of the cis-regulatory code. An obvious value of complete genome sequences lies in their ability to provide us with inventories of such components. I examine progress being made in linking genome content to the pattern of animal evolution, and argue that the gap between genomic and phenotypic complexity can only be understood through the totality of interacting components.
Collapse
|
14
|
Bielen H, Oberleitner S, Marcellini S, Gee L, Lemaire P, Bode HR, Rupp R, Technau U. Divergent functions of two ancientHydra Brachyuryparalogues suggest specific roles for their C-terminal domains in tissue fate induction. Development 2007; 134:4187-97. [DOI: 10.1242/dev.010173] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologues of the T-box gene Brachyury play important roles in mesoderm differentiation and other aspects of early development in all bilaterians. In the diploblast Hydra, the Brachyuryhomologue HyBra1 acts early in the formation of the hypostome, the location of the organiser in adult Hydra. We now report the isolation and characterisation of a second Brachyury gene, HyBra2. Sequence analysis suggests that HyBra1 and HyBra2 are paralogues, resulting from an ancient lineage-specific gene duplication. We show that both paralogues acquired novel functions, both at the level of their cis-regulation as well as through significant divergence of the coding sequence. Both genes are expressed in the hypostome, but HyBra1 is predominantly endodermal, whereas HyBra2 transcripts are found primarily in the ectoderm. During bud formation, both genes are activated before any sign of evagination, suggesting an early role in head formation. During regeneration, HyBra1 is an immediate-early response gene and is insensitive to protein synthesis inhibition, whereas the onset of expression of HyBra2 is delayed and requires protein synthesis. The functional consequence of HyBra1/2 protein divergence on cell fate decisions was tested in Xenopus. HyBra1 induces mesoderm, like vertebrate Brachyury proteins. By contrast, HyBra2 shows a strong cement-gland and neural-inducing activity. Domain-swapping experiments show that the C-terminal domain of HyBra2 is responsible for this specific phenotype. Our data support the concept of sub- and neofunctionalisation upon gene duplication and show that divergence of cis-regulation and coding sequence in paralogues can lead to dramatic changes in structure and function.
Collapse
Affiliation(s)
- Holger Bielen
- Sars International Centre for Marine Molecular Biology, University of Bergen,Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Sabine Oberleitner
- Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrase 44, D-80336 München, Germany
| | - Sylvain Marcellini
- IBDM/LGPD Case 907, Campus de Luminy, 13288 Marseille, France
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C,Concepción, Chile
| | - Lydia Gee
- Developmental Biology Center and Developmental and Cell Biology Department,University of California at Irvine, Irvine, CA 92697, USA
| | - Patrick Lemaire
- IBDM/LGPD Case 907, Campus de Luminy, 13288 Marseille, France
| | - Hans R. Bode
- Developmental Biology Center and Developmental and Cell Biology Department,University of California at Irvine, Irvine, CA 92697, USA
| | - Ralph Rupp
- Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrase 44, D-80336 München, Germany
| | - Ulrich Technau
- Sars International Centre for Marine Molecular Biology, University of Bergen,Thormøhlensgt. 55, 5008 Bergen, Norway
| |
Collapse
|