1
|
Lee CE, Raduka A, Gao N, Hussain A, Rezaee F. 8-Bromo-cAMP attenuates human airway epithelial barrier disruption caused by titanium dioxide fine and nanoparticles. Tissue Barriers 2024; 12:2300579. [PMID: 38166590 PMCID: PMC11583697 DOI: 10.1080/21688370.2023.2300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Titanium dioxide fine particles (TiO2-FPs) and nanoparticles (TiO2-NPs) are the most widely used whitening pigments worldwide. Inhalation of TiO2-FPs and TiO2-NPs can be harmful as it triggers toxicity in the airway epithelial cells. The airway epithelium serves as the respiratory system's first line of defense in which airway epithelial cells are significant targets of inhaled pathogens and environmental particles. Our group previously found that TiO2-NPs lead to a disrupted barrier in the polarized airway epithelial cells. However, the effect of TiO2-FPs on the respiratory epithelial barrier has not been examined closely. In this study, we aimed to compare the effects of TiO2-FPs and TiO2-NPs on the structure and function of the airway epithelial barrier. Additionally, we hypothesized that 8-Bromo-cAMP, a cyclic adenosine monophosphate (cAMP) derivative, would alleviate the disruptive effects of both TiO2-FPs and TiO2-NPs. We observed increased epithelial membrane permeability in both TiO2-FPs and TiO2-NPs after exposure to 16HBE cells. Immunofluorescent labeling showed that both particle sizes disrupted the structural integrity of airway epithelial tight junctions and adherens junctions. TiO2-FPs had a slightly more, but insignificant impact on the epithelial barrier disruption than TiO2-NPs. Treatment with 8-Bromo-cAMP significantly attenuated the barrier-disrupting impact of both TiO2-FPs and TiO2-NPs on cell monolayers. Our study demonstrates that both TiO2-FPs and TiO2-NPs cause comparable barrier disruption and suggests a protective role for cAMP signaling. The observed effects of TiO2-FPs and TiO2-NPs provide a necessary understanding for characterizing the pathways involved in the defensive role of the cAMP pathway on TiO2-induced airway barrier disruption.
Collapse
Affiliation(s)
- Claire E. Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Cognitive Science, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Aabid Hussain
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH, USA
| |
Collapse
|
2
|
Mukai H, Takanashi M, Ogawara KI, Maruyama M, Higaki K. Possible Regulation of P-Glycoprotein Function by Adrenergic Agonists II: Study with Isolated Rat Jejunal Sheets and Caco-2 Cell monolayers. J Pharm Sci 2024; 113:1209-1219. [PMID: 37984697 DOI: 10.1016/j.xphs.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
To clarify the regulation of drug absorption by the enteric nervous system, we investigated how adrenergic agonists (adrenaline (ADR), clonidine (CLO), dobutamine (DOB)) and dibutyryl cAMP (DBcAMP) affected P-glycoprotein (P-gp) function by utilizing isolated rat jejunal sheets and Caco-2 cell monolayers. ADR and CLO significantly decreased the secretory transport (Papptotal) of rhodamine-123 and tended to decrease the transport via P-gp (PappP-gp) and passive transport (Papppassive). In contrast, DBcAMP significantly increased and DOB tended to increase Papptotal and both tended to increase PappP-gpand Papppassive. Changes in P-gp expression on brush border membrane by adrenergic agonists and DBcAMP were significantly correlated with PappP-gp, while P-gp expression was not changed in whole cell homogenates, suggesting that the trafficking of P-gp would be responsible for its functional changes. Papppassive was inversely correlated with transmucosal or transepithelial electrical resistance, indicating that adrenergic agonists affected the paracellular permeability. Adrenergic agonists also changed cAMP levels, which were significantly correlated with PappP-gp. Furthermore, protein kinase A (PKA) or PKC inhibitor significantly decreased PappP-gp in Caco-2 cell monolayers, suggesting that they would partly contribute to the changes in P-gp activity. In conclusion, adrenergic agonists regulated P-gp function and paracellular permeability, which would be caused via adrenoceptor stimulation.
Collapse
Affiliation(s)
- Hironori Mukai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Production Department, Odawara Central Factory, Nippon Shinyaku Co., Ltd., 676-1 Kuwahara, Odawara, Kanagawa 250-0861, Japan
| | - Masashi Takanashi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Central Hyogo Area, Hanshin Dispensing Pharmacy, I & H Co., Ltd., 1-18 Ohmasu-cho, Ashiya, Hyogo 659-0066, Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
3
|
Li X, Fetter R, Schwabe T, Jung C, Liu L, Steller H, Gaul U. The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood-brain barrier formation and maturation. eLife 2021; 10:68275. [PMID: 34382936 PMCID: PMC8390003 DOI: 10.7554/elife.68275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) of Drosophila comprises a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper SJ organization in a highly coordinated spatiotemporal manner. These effects are mediated in part by PKA's molecular targets MLCK and Rho1. Moreover, 3D reconstruction of SJ ultrastructure demonstrates that the continuity of individual SJ segments, and not their total length, is crucial for generating a proper paracellular seal. Based on these findings, we propose that polarized Moody/PKA signaling plays a central role in controlling the cell growth and maintaining BBB integrity during the continuous morphogenesis of the SPG secondary epithelium, which is critical to maintain tissue size and brain homeostasis during organogenesis.
Collapse
Affiliation(s)
- Xiaoling Li
- Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| | - Richard Fetter
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Tina Schwabe
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Christophe Jung
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| |
Collapse
|
4
|
Fischer TW, Bergmann A, Kruse N, Kleszczynski K, Skobowiat C, Slominski AT, Paus R. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP 3 -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75 NTR and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br J Dermatol 2021; 184:96-110. [PMID: 32271938 PMCID: PMC7962141 DOI: 10.1111/bjd.19115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Human hair is highly responsive to stress, and human scalp hair follicles (HFs) contain a peripheral neuroendocrine equivalent of the systemic hypothalamic-pituitary-adrenal (HPA) stress axis. Androgenetic alopecia (AGA) is supposed to be aggravated by stress. We used corticotropin-releasing hormone (CRH), which triggers the HPA axis, to induce a stress response in human ex vivo male AGA HFs. Caffeine is known to reverse testosterone-mediated hair growth inhibition in the same hair organ culture model. OBJECTIVES To investigate whether caffeine would antagonize CRH-mediated stress in these HFs. METHODS HFs from balding vertex area scalp biopsies of men affected by AGA were incubated with CRH (10-7 mol L-1 ) with or without caffeine (0·001% or 0·005%). RESULTS Compared to controls, CRH significantly enhanced the expression of catagen-inducing transforming growth factor-β2 (TGF-β2) (P < 0·001), CRH receptors 1 and 2 (CRH-R1/2) (P < 0·01), adrenocorticotropic hormone (ACTH) (P < 0·001) and melanocortin receptor 2 (MC-R2) (P < 0·001), and additional stress-associated parameters, substance P and p75 neurotrophin receptor (p75NTR ). CRH inhibited matrix keratinocyte proliferation and expression of anagen-promoting insulin-like growth factor-1 (IGF-1) and the pro-proliferative nerve growth factor receptor NGF-tyrosine kinase receptor A (TrkA). Caffeine significantly counteracted all described stress effects and additionally enhanced inositol trisphosphate receptor (IP3 -R), for the first time detected in human HFs. CONCLUSIONS These findings provide the first evidence in ex vivo human AGA HFs that the stress mediator CRH induces not only a complex intrafollicular HPA response, but also a non-HPA-related stress response. Moreover, we show that these effects can be effectively antagonized by caffeine. Thus, these data strongly support the hypothesis that stress can impair human hair physiology and induce hair loss, and that caffeine may effectively counteract stress-induced hair damage and possibly prevent stress-induced hair loss.
Collapse
Affiliation(s)
- T W Fischer
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - A Bergmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - N Kruse
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - K Kleszczynski
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - C Skobowiat
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| | - R Paus
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Domingues L, Hurbain I, Gilles-Marsens F, Sirés-Campos J, André N, Dewulf M, Romao M, Viaris de Lesegno C, Macé AS, Blouin C, Guéré C, Vié K, Raposo G, Lamaze C, Delevoye C. Coupling of melanocyte signaling and mechanics by caveolae is required for human skin pigmentation. Nat Commun 2020; 11:2988. [PMID: 32532976 PMCID: PMC7293304 DOI: 10.1038/s41467-020-16738-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue homeostasis requires regulation of cell-cell communication, which relies on signaling molecules and cell contacts. In skin epidermis, keratinocytes secrete factors transduced by melanocytes into signaling cues promoting their pigmentation and dendrite outgrowth, while melanocytes transfer melanin pigments to keratinocytes to convey skin photoprotection. How epidermal cells integrate these functions remains poorly characterized. Here, we show that caveolae are asymmetrically distributed in melanocytes and particularly abundant at the melanocyte-keratinocyte interface in epidermis. Caveolae in melanocytes are modulated by ultraviolet radiations and keratinocytes-released factors, like miRNAs. Preventing caveolae formation in melanocytes increases melanin pigment synthesis through upregulation of cAMP signaling and decreases cell protrusions, cell-cell contacts, pigment transfer and epidermis pigmentation. Altogether, we identify that caveolae serve as molecular hubs that couple signaling outputs from keratinocytes to mechanical plasticity of pigment cells. The coordination of intercellular communication and contacts by caveolae is thus crucial to skin pigmentation and tissue homeostasis.
Collapse
Affiliation(s)
- Lia Domingues
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France.
| | - Ilse Hurbain
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005, Paris, France
| | - Floriane Gilles-Marsens
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France
- Institut NeuroMyoGene, UCBL1, UMR 5310, INSERM U1217, Génétique et Neurobiologie de C. Elegans, Faculté de Médecine et de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France
| | - Nathalie André
- Laboratoire Clarins, 5 rue Ampère, 95000, Pontoise, France
| | - Melissa Dewulf
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR 3666, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, 75005, Paris, France
| | - Maryse Romao
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005, Paris, France
| | - Christine Viaris de Lesegno
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR 3666, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, 75005, Paris, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005, Paris, France
| | - Cédric Blouin
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR 3666, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, 75005, Paris, France
| | | | - Katell Vié
- Laboratoire Clarins, 5 rue Ampère, 95000, Pontoise, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005, Paris, France
| | - Christophe Lamaze
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR 3666, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, 75005, Paris, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France.
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005, Paris, France.
| |
Collapse
|
6
|
Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry. J Virol 2018; 92:JVI.01982-17. [PMID: 29491159 DOI: 10.1128/jvi.01982-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes 500,000 deaths annually, in association with end-stage liver diseases. Investigations of the HCV life cycle have widened the knowledge of virology, and here we discovered that two piperazinylbenzenesulfonamides inhibit HCV entry into liver cells. The entry of HCV into host cells is a complex process that is not fully understood but is characterized by multiple spatially and temporally regulated steps involving several known host factors. Through a high-content virus infection screening analysis with a library of 1,120 biologically active chemical compounds, we identified SB258585, an antagonist of serotonin receptor 6 (5-HT6), as a new inhibitor of HCV entry in liver-derived cell lines as well as primary hepatocytes. A functional characterization suggested a role for this compound and the compound SB399885, which share similar structures, as inhibitors of a late HCV entry step, modulating the localization of the coreceptor tight junction protein claudin-1 (CLDN1) in a 5-HT6-independent manner. Both chemical compounds induced an intracellular accumulation of CLDN1, reflecting export impairment. This regulation correlated with the modulation of protein kinase A (PKA) activity. The PKA inhibitor H89 fully reproduced these phenotypes. Furthermore, PKA activation resulted in increased CLDN1 accumulation at the cell surface. Interestingly, an increase of CLDN1 recycling did not correlate with an increased interaction with CD81 or HCV entry. These findings reinforce the hypothesis of a common pathway, shared by several viruses, which involves G-protein-coupled receptor-dependent signaling in late steps of viral entry.IMPORTANCE The HCV entry process is highly complex, and important details of this structured event are poorly understood. By screening a library of biologically active chemical compounds, we identified two piperazinylbenzenesulfonamides as inhibitors of HCV entry. The mechanism of inhibition was not through the previously described activity of these inhibitors as antagonists of serotonin receptor 6 but instead through modulation of PKA activity in a 5-HT6-independent manner, as proven by the lack of 5-HT6 in the liver. We thus highlighted the involvement of the PKA pathway in modulating HCV entry at a postbinding step and in the recycling of the tight junction protein claudin-1 (CLDN1) toward the cell surface. Our work underscores once more the complexity of HCV entry steps and suggests a role for the PKA pathway as a regulator of CLDN1 recycling, with impacts on both cell biology and virology.
Collapse
|
7
|
GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis. J Neurosci 2017; 37:9925-9938. [PMID: 28899916 DOI: 10.1523/jneurosci.0103-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023] Open
Abstract
Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmental factor, contribute to remyelination failure by perturbing oligodendrocyte progenitor cell (OPC) maturation. Here, we aim at elucidating whether exogenously added gangliosides (i.e., cell surface lipids with a potential to modulate signaling pathways) could counteract fibronectin-mediated inhibition of OPC maturation. Exclusive exposure of rat oligodendrocytes to GD1a, but not other gangliosides, overcomes aggregated fibronectin-induced inhibition of myelin membrane formation, in vitro, and OPC differentiation in fibronectin aggregate containing cuprizone-induced demyelinated lesions in male mice. GD1a exerts its effect on OPCs by inducing their proliferation and, at a late stage, by modulating OPC maturation. Kinase activity profiling revealed that GD1a activated a protein kinase A (PKA)-dependent signaling pathway and increased phosphorylation of the transcription factor cAMP response element-binding protein. Consistently, the effect of GD1a in restoring myelin membrane formation in the presence of fibronectin aggregates was abolished by the PKA inhibitor H89, whereas the effect of GD1a was mimicked by the PKA activator dibutyryl-cAMP. Together, GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation by activating a PKA-dependent signaling pathway. Given the persistent presence of fibronectin aggregates in MS lesions, ganglioside GD1a might act as a potential novel therapeutic tool to selectively modulate the detrimental signaling environment that precludes remyelination.SIGNIFICANCE STATEMENT As an environmental factor, aggregates of the extracellular matrix protein fibronectin perturb the maturation of oligodendrocyte progenitor cells (OPCs), thereby impeding remyelination, in the demyelinating disease multiple sclerosis (MS). Here we demonstrate that exogenous addition of ganglioside GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation, both in vitro and in vivo, by activating a PKA-dependent signaling pathway. We propose that targeted delivery of GD1a to MS lesions may act as a potential novel molecular tool to boost maturation of resident OPCs to overcome remyelination failure and halt disease progression.
Collapse
|
8
|
Schwabe T, Li X, Gaul U. Dynamic analysis of the mesenchymal-epithelial transition of blood-brain barrier forming glia in Drosophila. Biol Open 2017; 6:232-243. [PMID: 28108476 PMCID: PMC5312092 DOI: 10.1242/bio.020669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During development, many epithelia are formed by a mesenchymal-epithelial transition (MET). Here, we examine the major stages and underlying mechanisms of MET during blood-brain barrier formation in Drosophila. We show that contact with the basal lamina is essential for the growth of the barrier-forming subperineurial glia (SPG). Septate junctions (SJs), which provide insulation of the paracellular space, are not required for MET, but are necessary for the establishment of polarized SPG membrane compartments. In vivo time-lapse imaging reveals that the Moody GPCR signaling pathway regulates SPG cell growth and shape, with different levels of signaling causing distinct phenotypes. Timely, well-coordinated SPG growth is essential for the uniform insertion of SJs and thus the insulating function of the barrier. To our knowledge, this is the first dynamic in vivo analysis of all stages in the formation of a secondary epithelium, and of the key role trimeric G protein signaling plays in this important morphogenetic process. Summary: This study examines the major steps and underlying mechanisms of mesenchymal-epithelial transition of the blood-brain-barrier forming glia in Drosophila, including the role of basal lamina, septate junctions and of trimeric G protein signaling.
Collapse
Affiliation(s)
- Tina Schwabe
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany
| | - Xiaoling Li
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany.,Rockefeller University, 1230 York Ave, New York, 10065-6399 NY, USA
| | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany
| |
Collapse
|
9
|
Golkowski M, Shimizu-Albergine M, Suh HW, Beavo JA, Ong SE. Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics. Cell Signal 2015; 28:764-78. [PMID: 26643407 DOI: 10.1016/j.cellsig.2015.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Many cellular processes are modulated by cyclic AMP and nucleotide phosphodiesterases (PDEs) regulate this second messenger by catalyzing its breakdown. The major unique function of testicular Leydig cells is to produce testosterone in response to luteinizing hormone (LH). Treatment of Leydig cells with PDE inhibitors increases cAMP levels and the activity of its downstream effector, cAMP-dependent protein kinase (PKA), leading to a series of kinase-dependent signaling and transcription events that ultimately increase testosterone release. We have recently shown that PDE4B and PDE4C as well as PDE8A and PDE8B are expressed in rodent Leydig cells and that combined inhibition of PDE4 and PDE8 leads to dramatically increased steroid biosynthesis. Here we investigated the effect of PDE4 and PDE8 inhibition on the molecular mechanisms of cAMP actions in a mouse MA10 Leydig cell line model with SILAC mass spectrometry-based phosphoproteomics. We treated MA10 cells either with PDE4 family specific inhibitor (Rolipram) and PDE8 family specific inhibitor (PF-04957325) alone or in combination and quantified the resulting phosphorylation changes at five different time points between 0 and 180min. We identified 28,336 phosphosites from 4837 proteins and observed significant regulation of 749 sites in response to PDE4 and PDE8 inhibitor treatment. Of these, 132 phosphosites were consensus PKA sites. Our data strongly suggest that PDE4 and PDE8 inhibitors synergistically regulate phosphorylation of proteins required for many different cellular processes, including cell cycle progression, lipid and glucose metabolism, transcription, endocytosis and vesicle transport. Our data suggests that cAMP, PDE4 and PDE8 coordinate steroidogenesis by acting on not one rate-limiting step but rather multiple pathways. Moreover, the pools of cAMP controlled by these PDEs also coordinate many other metabolic processes that may be regulated to assure timely and sufficient testosterone secretion in response to LH.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, School of Medicine, University of Washington, USA
| | | | - Hyong Won Suh
- Department of Pharmacology, School of Medicine, University of Washington, USA
| | - Joseph A Beavo
- Department of Pharmacology, School of Medicine, University of Washington, USA.
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine, University of Washington, USA.
| |
Collapse
|
10
|
Kitagishi Y, Minami A, Nakanishi A, Ogura Y, Matsuda S. Neuron membrane trafficking and protein kinases involved in autism and ADHD. Int J Mol Sci 2015; 16:3095-115. [PMID: 25647412 PMCID: PMC4346882 DOI: 10.3390/ijms16023095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022] Open
Abstract
A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|
11
|
PIAO LONGZHEN, PARK JISOO, LI YUWEN, SHIN SANGHEE, SHIN SOYEON, KONG GYEYEONG, SHRESTHA ROBIN, TRAN QUANGDON, HUR GANGMIN, KIM JEONGLAN, PARK JONGSUN. SOCS3 and SOCS6 are required for the risperidone-mediated inhibition of insulin and leptin signaling in neuroblastoma cells. Int J Mol Med 2014; 33:1364-70. [DOI: 10.3892/ijmm.2014.1693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/06/2014] [Indexed: 11/05/2022] Open
|
12
|
Stenbeck G, Lawrence KM, Albert AP. Hormone-stimulated modulation of endocytic trafficking in osteoclasts. Front Endocrinol (Lausanne) 2012; 3:103. [PMID: 22936925 PMCID: PMC3424527 DOI: 10.3389/fendo.2012.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/05/2012] [Indexed: 11/30/2022] Open
Abstract
A precise control of vesicular trafficking is crucial not only for osteoclastic bone resorption, but also for the crosstalk between osteoclasts and osteoblasts, which regulates bone homeostasis. In addition to the release of growth factors and modulators, such as glutamate, flux through the intracellular trafficking routes could also provide the osteoclast with a monitoring function of its resorption activity. To establish the signaling pathways regulating trafficking events in resorbing osteoclasts, we used the bone conserving hormone calcitonin, which has the unique property of inducing osteoclast quiescence. Calcitonin acts through the calcitonin receptor and activates multiple signaling pathways. By monitoring trafficking of a fluorescent low molecular weight probe in mature, bone resorbing osteoclasts we show for the first time that calcitonin blocks endocytosis from the ruffled border by phospholipase C (PLC) activation. Furthermore, we identify a requirement for polyunsaturated fatty acids in endocytic trafficking in osteoclasts. Inhibition of PLC prior to calcitonin treatment restores endocytosis to 75% of untreated rates. This effect is independent of protein kinase C activation and can be mimicked by an increase in intracellular calcium. We thus define an essential role for intracellular calcium levels in the maintenance of endocytosis in osteoclasts.
Collapse
Affiliation(s)
- Gudrun Stenbeck
- Centre for Cell and Chromosome Biology, School of Health Science and Social Care, Brunel UniversityUxbridge, UK
- *Correspondence: Gudrun Stenbeck, Centre for Cell and Chromosome Biology, School of Health Science and Social Care, Heinz Wolff Building, Brunel University, Uxbridge UB8 3PH, UK. e-mail:
| | - Kevin M. Lawrence
- Pharmacology and Cell Physiology, Biomedical Sciences Research Centre, Division of Biomedical Sciences, St George’s, University of LondonLondon, UK
| | - Anthony P. Albert
- Pharmacology and Cell Physiology, Biomedical Sciences Research Centre, Division of Biomedical Sciences, St George’s, University of LondonLondon, UK
| |
Collapse
|
13
|
Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC, Mertens JC, Sirica AE, Gores GJ. Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology 2011; 54:2076-88. [PMID: 22038837 PMCID: PMC3230714 DOI: 10.1002/hep.24588] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Cholangiocarcinoma (CCA) cells paradoxically express the death ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and, therefore, are dependent upon potent survival signals to circumvent TRAIL cytotoxicity. CCAs are also highly desmoplastic cancers with a tumor microenvironment rich in myofibroblasts (MFBs). Herein, we examine a role for MFB-derived CCA survival signals. We employed human KMCH-1, KMBC, HuCCT-1, TFK-1, and Mz-ChA-1 CCA cells, as well as human primary hepatic stellate and myofibroblastic LX-2 cells, for these studies. In vivo experiments were conducted using a syngeneic rat orthotopic CCA model. Coculturing CCA cells with myofibroblastic human primary hepatic stellate cells or LX-2 cells significantly decreased TRAIL-induced apoptosis in CCA cells, a cytoprotective effect abrogated by neutralizing platelet-derived growth factor (PDGF)-BB antiserum. Cytoprotection by PDGF-BB was dependent upon Hedgehog (Hh) signaling, because it was abolished by the smoothened (SMO; the transducer of Hh signaling) inhibitor, cyclopamine. PDGF-BB induced cyclic adenosine monophosphate-dependent protein kinase-dependent trafficking of SMO to the plasma membrane, resulting in glioma-associated oncogene (GLI)2 nuclear translocation and activation of a consensus GLI reporter gene-based luciferase assay. A genome-wide messenger RNA expression analysis identified 67 target genes to be commonly up- (50 genes) or down-regulated (17 genes) by both Sonic hedgehog and PDGF-BB in a cyclopamine-dependent manner in CCA cells. Finally, in a rodent CCA in vivo model, cyclopamine administration increased apoptosis in CCA cells, resulting in tumor suppression. CONCLUSIONS MFB-derived PDGF-BB protects CCA cells from TRAIL cytotoxicity by a Hh-signaling-dependent process. These results have therapeutical implications for the treatment of human CCA.
Collapse
Affiliation(s)
- C D Fingas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
,Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - S F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - N W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - J L Mott
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - M E Guicciardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - S C Cazanave
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - J C Mertens
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - A E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - G J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Wang GL, Jiang PJ, Wang XH, Chen W. Construction of a eukaryotic expression plasmid encoding the human PKAR IIβ gene and its expression in human gastric cancer BGC-823 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:1446-1450. [DOI: 10.11569/wcjd.v19.i14.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a eukaryotic expression plasmid encoding the human protein kinase A regulatory subunit II beta (PKAR IIβ) gene and to examine its expression and localization in BGC-823 gastric cells using green fluorescent protein as a reporter.
METHODS: The coding sequence of the PKAR IIβ gene was amplified from the plasmid pRSETB-PKARIIβ by PCR and subcloned into pEGFP-C1 vector after digestion with Xho I and EcoR I. After the identity of recombinant plasmid was verified by direct sequencing, the plasmid was transfected into BGC-823 cells. The expression of the recombinant plasmid in BGC-823 cells was detected by Western blot. The localization of GFP-PKARIIβ in BGC-823 cells was observed by laser scanning confocal microscopy.
RESULTS: The coding sequence of the PKARIIβ gene was inserted into the pEGFP-C1 vector successfully. Restriction enzymes digestion showed that the length of the insert was 1.2 kb, matching the expected size. The expression of GFP-PKARIIβ fusion protein, which had a molecular weight of 72 000 Da, was detected in BGC-823 cells by Western blot. The GFP-PKARIIβ protein was localized predominantly to the cytoplasm but sparsely to the nucleus of HEK293 and BGC-823 cells.
CONCLUSION: A recombinant plasmid expressing the PKARIIβ gene has been successfully constructed and provides a tool for future investigation of PKARIIβ functions. The GFP-PKARIIβ fusion protein was expressed mainly in the cytoplasm of HEK293 and BGC7901 cells.
Collapse
|
15
|
Protein kinase A regulates GDNF/RET-dependent but not GDNF/Ret-independent ureteric bud outgrowth from the Wolffian duct. Dev Biol 2010; 347:337-47. [PMID: 20816800 DOI: 10.1016/j.ydbio.2010.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 02/01/2023]
Abstract
Embryonic kidney development begins with the outgrowth of the ureteric bud (UB) from the Wolffian duct (WD) into the adjacent metanephric mesenchyme (MM). Both a GDNF-dependent and GDNF-independent (Maeshima et al., 2007) pathway have been identified. In vivo and in vitro, the GDNF-dependent pathway is inhibited by BMPs, one of the factors invoked to explain the limitation of UB formation in the unbudded regions of the WD surrounding the UB. However, the exact mechanism remains unknown. Here a previously described in vitro system that models UB budding from the WD was utilized to study this process. Because Protein kinase A (PKA) activation has been shown to prevent migration, morphogenesis and tubulogenesis of epithelial cells (Santos et al., 1993), its activity in budded and non-budded portions of the GDNF-induced WD was analyzed. The level of PKA activity was 15-fold higher in the unbudded portions of the WD compared to budded portions, suggesting that PKA activity plays a key role in controlling the site of UB emergence. Using well-characterized PKA agonists and antagonists, we demonstrated that at various levels of the PKA-signaling hierarchy, PKA regulates UB outgrowth from the WD by suppressing budding events. This process appeared to be PKA-2 isoform specific, and mediated by changes in the duct rather than the surrounding mesenchyme. In addition, it was not due to changes in either the sorting of junctional proteins, cell death, or cell proliferation. Furthermore, the suppressive effect of cAMP on budding did not appear to be mediated by spread to adjacent cells via gap junctions. Conversely, antagonism of PKA activity stimulated UB outgrowth from the WD and resulted in both an increase in the number of buds per unit length of WD as well as a larger surface area per bud. Using microarrays, analysis of gene expression in GDNF-treated WDs in which the PKA pathway had been activated revealed a nearly 14-fold decrease in Ret, a receptor for GDNF. A smaller decrease in GFRα1. a co-receptor for GDNF, was also observed. Using Ret-null WDs, we were able to demonstrate that PKA regulated GDNF-dependent budding but not GDNF-independent pathway for WD budding. We also found that BMP2 was higher in unbudded regions of the GDNF-stimulated WD. Treatment of isolated WDs with BMP2 suppressed budding and resulted in a 3-fold increase in PKA activity. The data suggests that the suppression of budding by BMPs and possibly other factors in non-budded zones of the WD may be regulated in part by increased PKA activity, probably partially through downregulation of Ret/GFRα1 coreceptor expression.
Collapse
|
16
|
Norambuena A, Metz C, Jung JE, Silva A, Otero C, Cancino J, Retamal C, Valenzuela JC, Soza A, González A. Phosphatidic acid induces ligand-independent epidermal growth factor receptor endocytic traffic through PDE4 activation. Mol Biol Cell 2010; 21:2916-29. [PMID: 20554760 PMCID: PMC2921116 DOI: 10.1091/mbc.e10-02-0167] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endocytic traffic can control cell surface versus intracellular distribution of empty/inactive EGFR, an thus its accessibility to external stimuli, through a pathway involving down regulation of PKA activity mediated by PA signaling towards PDE4. This novel control mechanism can trans-modulate EGFR function by heterologous stimuli of PLD. Endocytosis modulates EGFR function by compartmentalizing and attenuating or enhancing its ligand-induced signaling. Here we show that it can also control the cell surface versus intracellular distribution of empty/inactive EGFR. Our previous observation that PKA inhibitors induce EGFR internalization prompted us to test phosphatidic acid (PA) generated by phospholipase D (PLD) as an endogenous down-regulator of PKA activity, which activates rolipram-sensitive type 4 phosphodiesterases (PDE4) that degrade cAMP. We found that inhibition of PA hydrolysis by propranolol, in the absence of ligand, provokes internalization of inactive (neither tyrosine-phosphorylated nor ubiquitinated) EGFR, accompanied by a transient increase in PA levels and PDE4s activity. This EGFR internalization is mimicked by PA micelles and is strongly counteracted by PLD2 silencing, rolipram or forskolin treatment, and PKA overexpression. Accelerated EGFR endocytosis seems to be mediated by clathrin-dependent and -independent pathways, leading to receptor accumulation in juxtanuclear recycling endosomes, also due to a decreased recycling. Internalized EGFR can remain intracellular without degradation for several hours or return rapidly to the cell surface upon discontinuation of the stimulus. This novel regulatory mechanism of EGFR, also novel function of signaling PA, can transmodulate receptor accessibility in response to heterologous stimuli.
Collapse
Affiliation(s)
- Andrés Norambuena
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Compartmentalization within cells provides spatial organization of signaling pathways and ensures the specificity of signaling. In vertebrates, the primary cilium, a tiny microtubule-based protrusion present on most cells, is essential for organizing events during Hedgehog signal transduction. When cells are stimulated with Hedgehog ligands, proteins in the pathway move in and out of the cilia. Protein kinase A (PKA), which is implicated in diverse cellular processes including protein trafficking, is a component of the Hedgehog signaling pathway. PKA has been localized near primary cilia, at a location suitable for regulating the localization of other proteins in the pathway.
Collapse
Affiliation(s)
- Ljiljana Milenkovic
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | |
Collapse
|
18
|
Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. AN ACAD BRAS CIENC 2010; 81:409-29. [PMID: 19722012 DOI: 10.1590/s0001-37652009000300007] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.
Collapse
Affiliation(s)
- Juliana L Dreyfuss
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
19
|
Wojtal KA, Diskar M, Herberg FW, Hoekstra D, van Ijzendoorn SCD. Regulatory subunit I-controlled protein kinase A activity is required for apical bile canalicular lumen development in hepatocytes. J Biol Chem 2009; 284:20773-80. [PMID: 19465483 DOI: 10.1074/jbc.m109.013599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Signaling via cAMP plays an important role in apical cell surface dynamics in epithelial cells. In hepatocytes, elevated levels of cAMP as well as extracellular oncostatin M stimulate apical lumen development in a manner that depends on protein kinase A (PKA) activity. However, neither the identity of PKA isoforms involved nor the mechanisms of the cross-talk between oncostatin M and cAMP/PKA signaling pathways have been elucidated. Here we demonstrate that oncostatin M and PKA signaling converge at the level of the PKA holoenzyme downstream of oncostatin M-stimulated MAPK activation. Experiments were performed with chemically modified cAMP analogues that preferentially target regulatory subunit (R) I or RII holoenzymes, respectively, in hepatocytes. The data suggest that the dissociation of RI- but not RII-containing holoenzymes, as well as catalytic activity of PKA, is required for apical lumen development in response to elevated levels of cAMP and oncostatin M. However, oncostatin M signaling does not stimulate PKA holoenzyme dissociation in living cells. Based on pharmacological and cell biological studies, it is concluded that RI-controlled PKA activity is essential for cAMP- and oncostatin M-stimulated development of apical bile canalicular lumens.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Department of Cell Biology, Section of Membrane Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9713AV, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Abstract
Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.
Collapse
|