1
|
Luo Z, Shi J, Pandey P, Ruan ZR, Sevdali M, Bu Y, Lu Y, Du S, Chen EH. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev Cell 2022; 57:1582-1597.e6. [PMID: 35709765 PMCID: PMC10180866 DOI: 10.1016/j.devcel.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Myoblast fusion is an indispensable process in skeletal muscle development and regeneration. Studies in Drosophila led to the discovery of the asymmetric fusogenic synapse, in which one cell invades its fusion partner with actin-propelled membrane protrusions to promote fusion. However, the timing and sites of vertebrate myoblast fusion remain elusive. Here, we show that fusion between zebrafish fast muscle cells is mediated by an F-actin-enriched invasive structure. Two cell adhesion molecules, Jam2a and Jam3b, are associated with the actin structure, with Jam2a being the major organizer. The Arp2/3 actin nucleation-promoting factors, WAVE and WASP-but not the bipartite fusogenic proteins, Myomaker or Myomixer-promote the formation of the invasive structure. Moreover, the convergence of fusogen-containing microdomains and the invasive protrusions is a prerequisite for cell membrane fusion. Thus, our study provides unprecedented insights into the cellular architecture and molecular determinants of the asymmetric fusogenic synapse in an intact vertebrate animal.
Collapse
Affiliation(s)
- Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Sevdali
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Bu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Drosophila melanogaster: A Model System to Study Distinct Genetic Programs in Myoblast Fusion. Cells 2022; 11:cells11030321. [PMID: 35159130 PMCID: PMC8834112 DOI: 10.3390/cells11030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/25/2022] Open
Abstract
Muscle fibers are multinucleated cells that arise during embryogenesis through the fusion of mononucleated myoblasts. Myoblast fusion is a lifelong process that is crucial for the growth and regeneration of muscles. Understanding the molecular mechanism of myoblast fusion may open the way for novel therapies in muscle wasting and weakness. Recent reports in Drosophila and mammals have provided new mechanistic insights into myoblast fusion. In Drosophila, muscle formation occurs twice: during embryogenesis and metamorphosis. A fundamental feature is the formation of a cell–cell communication structure that brings the apposing membranes into close proximity and recruits possible fusogenic proteins. However, genetic studies suggest that myoblast fusion in Drosophila is not a uniform process. The complexity of the players involved in myoblast fusion can be modulated depending on the type of muscle that is formed. In this review, we introduce the different types of multinucleated muscles that form during Drosophila development and provide an overview in advances that have been made to understand the mechanism of myoblast fusion. Finally, we will discuss conceptual frameworks in cell–cell fusion in Drosophila and mammals.
Collapse
|
3
|
Segal D. Live Imaging of Myogenesis in Indirect Flight Muscles in Drosophila. Bio Protoc 2017; 7:e2377. [PMID: 34541118 DOI: 10.21769/bioprotoc.2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 11/02/2022] Open
Abstract
The indirect flight muscles (IFMs) are the largest muscles in the fly, making up the bulk of the adult thorax. IFMs in Drosophila are generated during pupariation by fusion of hundreds of muscle precursor cells (myoblasts) with larval muscle templates (myotubes). Prominent features, including the large number of fusion events, the structural similarity to vertebrate muscles, and the amenability to the powerful genetic techniques of the Drosophila system make the IFMs an attractive system to study muscle cell fusion. Here we describe methods for live imaging of IFMs, both in intact pupae, and in isolated IFMs ex-vivo. The protocols elaborated upon here were used in the manuscript by ( Segal et al., 2016 ).
Collapse
Affiliation(s)
- Dagan Segal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
RIGHI VALERIA, APIDIANAKIS YIORGOS, PSYCHOGIOS NIKOLAOS, RAHME LAURENCEG, TOMPKINS RONALDG, TZIKA AARIA. In vivo high-resolution magic angle spinning proton NMR spectroscopy of Drosophila melanogaster flies as a model system to investigate mitochondrial dysfunction in Drosophila GST2 mutants. Int J Mol Med 2014; 34:327-33. [DOI: 10.3892/ijmm.2014.1757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/03/2013] [Indexed: 11/06/2022] Open
|
5
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
6
|
Do muscle founder cells exist in vertebrates? Trends Cell Biol 2012; 22:391-6. [PMID: 22710008 DOI: 10.1016/j.tcb.2012.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 11/21/2022]
Abstract
Skeletal muscle is formed by the iterative fusion of precursor cells (myocytes) into long multinuclear fibres. Extensive studies of fusion in Drosophila embryos have lead to a paradigm in which myoblasts are divided into two distinct subtypes - founder and fusion-competent myoblasts (FCMs) - that can fuse to each other, but not among themselves. Only founder cells can direct the formation of muscle fibres, while FCMs act as a cellular substrate. Recent studies in zebrafish and mice have demonstrated conservation of the molecules originally identified in Drosophila, but an important question remains: is vertebrate fusion regulated by specifying myocyte subtypes? Stated simply: do vertebrate founder cells exist? In light of recent findings, we argue that a different regulatory mechanism has evolved in vertebrates.
Collapse
|
7
|
Mukherjee P, Gildor B, Shilo BZ, VijayRaghavan K, Schejter ED. The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis. Development 2011; 138:2347-57. [PMID: 21558381 DOI: 10.1242/dev.055012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myoblast fusion provides a fundamental, conserved mechanism for muscle fiber growth. We demonstrate here that the functional contribution of Wsp, the Drosophila homolog of the conserved actin nucleation-promoting factor (NPF) WASp, is essential for myoblast fusion during the formation of muscles of the adult fly. Disruption of Wsp function results in complete arrest of myoblast fusion in all muscles examined. Wsp activity during adult Drosophila myogenesis is specifically required for muscle cell fusion and is crucial both for the formation of new muscle fibers and for the growth of muscles derived from persistent larval templates. Although Wsp is expressed both in fibers and individual myoblasts, its activity in either one of these cell types is sufficient. SCAR, a second major Arp2/3 NPF, is also required during adult myoblast fusion. Formation of fusion-associated actin 'foci' is dependent on Arp2/3 complex function, but appears to rely on a distinct, unknown nucleator. The comprehensive nature of these requirements identifies Arp2/3-based branched actin polymerization as a universal mechanism underlying myoblast fusion.
Collapse
Affiliation(s)
- Priyankana Mukherjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | | | | | | | | |
Collapse
|
8
|
Molecular mechanisms of myoblast fusion across species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:113-35. [PMID: 21432017 DOI: 10.1007/978-94-007-0763-4_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle development, growth and regeneration depend on the ability of progenitor myoblasts to fuse to one another in a series of ordered steps. Whereas the cellular steps leading to the formation of a multinucleated myofiber are conserved in several model organisms, the molecular regulatory factors may vary. Understanding the common and divergent mechanisms regulating myoblast fusion in Drosophila melanogaster (fruit fly), Danio rerio (zebrafish) and Mus musculus (mouse) provides a better insight into the process of myoblast fusion than any of these models could provide alone. Deciphering the mechanisms of myoblast fusion from simpler to more complex organisms is of fundamental interest to skeletal muscle biology and may provide therapeutic avenues for various diseases that affect muscle.
Collapse
|
9
|
New Insights into the Mechanisms and Roles of Cell–Cell Fusion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:149-209. [DOI: 10.1016/b978-0-12-386039-2.00005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Tixier V, Bataillé L, Jagla K. Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 2010; 316:3019-27. [PMID: 20673829 DOI: 10.1016/j.yexcr.2010.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
Myogenesis is a highly conserved process ending up by the formation of contracting muscles. In Drosophila embryos, myogenesis gives rise to a segmentally repeated array of thirty distinct fibres, each of which represents an individual muscle. Since Drosophila offers a large range of genetic tools for easily testing gene functions, it has become one of the most studied and consequently best-described model organisms for muscle development. Over the last two decades, the Drosophila model system has enabled major advances in our understanding of how the initially equivalent mesodermal cells become competent for entering myogenic differentiation and how each distinct type of muscle is specified. Here we present an overview of Drosophila muscle development with a special focus on the diversification of muscle types and the genes that control acquisition of distinct muscle properties.
Collapse
Affiliation(s)
- Vanessa Tixier
- GReD, INSERM U931, CNRS UMR6247, Clermont University, Faculty of Medicine, 28 place Henri Dunant, Clermont-Ferrand, France
| | | | | |
Collapse
|
11
|
Haralalka S, Abmayr SM. Myoblast fusion in Drosophila. Exp Cell Res 2010; 316:3007-13. [PMID: 20580706 DOI: 10.1016/j.yexcr.2010.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process [1-4]. With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
12
|
Guerin CM, Kramer SG. Cytoskeletal remodeling during myotube assembly and guidance: coordinating the actin and microtubule networks. Commun Integr Biol 2010; 2:452-7. [PMID: 19907716 DOI: 10.4161/cib.2.5.9158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022] Open
Abstract
The formation of a multinucleated muscle fiber from individual myoblasts is a complex morphological event that requires dramatic cytoskeletal rearrangements. This multistep process includes myoblast fusion, myotube migration and elongation, myotube target recognition, and finally attachment to form a stable adhesion complex. Many of the studies directed towards understanding the developmental process of muscle morphogenesis at the cellular level have relied on forward genetic screens in model systems such as Drosophila melanogaster for mutations affecting individual stages in myogenesis. Through the analyses of these gene products, proteins that regulate the actin or microtubule cytoskeleton have emerged as important players in each of these steps. We recently demonstrated that RacGAP50C, an essential protein that functions as a cytoskeletal regulator during cell division, also plays an important role in organizing the polarized microtubule network in the elongating myotube. Here we review the current literature regarding Drosophila myogenesis and illustrate several steps of muscle development with respect to the diverse roles that the cytoskeleton plays during this process. Furthermore, we discuss the significance of cytoskeletal coordination during these multiple steps.
Collapse
Affiliation(s)
- Colleen M Guerin
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
13
|
The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner. PLoS One 2010; 5:e9374. [PMID: 20186342 PMCID: PMC2826419 DOI: 10.1371/journal.pone.0009374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 01/28/2010] [Indexed: 12/29/2022] Open
Abstract
Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf) and its paralogue Roughest (Rst), a scaffold protein Rolling pebbles (Rols) and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf.
Collapse
|
14
|
Rochlin K, Yu S, Roy S, Baylies MK. Myoblast fusion: when it takes more to make one. Dev Biol 2009; 341:66-83. [PMID: 19932206 DOI: 10.1016/j.ydbio.2009.10.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 01/09/2023]
Abstract
Cell-cell fusion is a crucial and highly regulated event in the genesis of both form and function of many tissues. One particular type of cell fusion, myoblast fusion, is a key cellular process that shapes the formation and repair of muscle. Despite its importance for human health, the mechanisms underlying this process are still not well understood. The purpose of this review is to highlight the recent literature pertaining to myoblast fusion and to focus on a comparison of these studies across several model systems, particularly the fly, zebrafish and mouse. Advances in technical analysis and imaging have allowed identification of new fusion genes and propelled further characterization of previously identified genes in each of these systems. Among the cellular steps identified as critical for myoblast fusion are migration, recognition, adhesion, membrane alignment and membrane pore formation and resolution. Importantly, striking new evidence indicates that orthologous genes govern several of these steps across these species. Taken together, comparisons across three model systems are illuminating a once elusive process, providing exciting new insights and a useful framework of genes and mechanisms.
Collapse
Affiliation(s)
- Kate Rochlin
- Program in Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
15
|
Nowak SJ, Nahirney PC, Hadjantonakis AK, Baylies MK. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. J Cell Sci 2009; 122:3282-93. [PMID: 19706686 DOI: 10.1242/jcs.047597] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myoblast fusion is crucial for the formation, growth, maintenance and regeneration of healthy skeletal muscle. Unfortunately, the molecular machinery, cell behaviors, and membrane and cytoskeletal remodeling events that govern fusion and myofiber formation remain poorly understood. Using time-lapse imaging approaches on mouse C2C12 myoblasts, we identify discrete and specific molecular events at myoblast membranes during fusion and myotube formation. These events include rearrangement of cell shape from fibroblast to spindle-like morphologies, changes in lamellipodial and filopodial extensions during different periods of differentiation, and changes in membrane alignment and organization during fusion. We find that actin-cytoskeleton remodeling is crucial for these events: pharmacological inhibition of F-actin polymerization leads to decreased lamellipodial and filopodial extensions and to reduced myoblast fusion. Additionally, shRNA-mediated inhibition of Nap1, a member of the WAVE actin-remodeling complex, results in accumulations of F-actin structures at the plasma membrane that are concomitant with a decrease in myoblast fusion. Our data highlight distinct and essential roles for actin cytoskeleton remodeling during mammalian myoblast fusion, provide a platform for cellular and molecular dissection of the fusion process, and suggest a functional conservation of Nap1-regulated actin-cytoskeleton remodeling during myoblast fusion between mammals and Drosophila.
Collapse
Affiliation(s)
- Scott J Nowak
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
16
|
Miao J, Fan Q, Cui Q, Zhang H, Chen L, Wang S, Guan N, Guan Y, Ding J. Newly identified cytoskeletal components are associated with dynamic changes of podocyte foot processes. Nephrol Dial Transplant 2009; 24:3297-305. [PMID: 19617259 DOI: 10.1093/ndt/gfp338] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Proteinuria, one of the main manifestations of nephrotic syndrome, is an important risk factor for the progression of renal diseases. Podocyte foot processes (FPs) injury induces proteinuria in most renal diseases. The podocyte cytoskeleton plays important roles in maintaining the normal morphology of FPs. However, the underlying cytoskeletal component that initiates and regulates the dynamic changes of FPs is still unclear. Here, the involved podocyte cytoskeletal molecules were explored on different days in puromycin aminonucleoside nephropathy rats. METHODS Microarray analysis of isolated glomeruli was performed at Day 2, Day 10 and Day 15 in puromycin aminonucleoside nephropathy rats. Cytoskeletal genebank was established by sorting with the keyword 'cytoskeleton' from PUBMED genebank to identify the differential cytoskeleton genes. Microarray results were further confirmed by real-time PCR, western blot and double immunolabelling to validate their localizations. RESULTS Nine different cytoskeletal genes were found to be involved in the dynamic changes of FPs in puromycin aminonucleoside nephropathy rats, including six up-regulated (Tagln, Actr2, Dnm3, Arc, Vcl and Birc5) and three down-regulated (Krt2-7, Nebl and Tnnc1). The differential expression of transgelin, survivin, arp2, cytokeratin7 and vinculin was verified by real-time PCR and western blot. Double immunolabelling revealed that five cytoskeletal proteins indeed colocalized with podocyte specific markers synaptopodin or alpha-actinin-4. In addition, similar expression and distribution changes were detected in patients with proteinuric renal diseases and puromycin aminonucleoside-treated podocytes. CONCLUSIONS We identified five novel podocyte cytoskeletal proteins and found that they were associated with the dynamic changes of FPs in podocyte injury.
Collapse
Affiliation(s)
- Jing Miao
- 1Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shelton C, Kocherlakota KS, Zhuang S, Abmayr SM. The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts. Development 2009; 136:1159-68. [PMID: 19270174 DOI: 10.1242/dev.026302] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The body wall muscle of a Drosophila larva is generated by fusion between founder cells and fusion-competent myoblasts (FCMs). Initially, a founder cell recognizes and fuses with one or two FCMs to form a muscle precursor, then the developing syncitia fuses with additional FCMs to form a muscle fiber. These interactions require members of the immunoglobulin superfamily (IgSF), with Kin-of-IrreC (Kirre) and Roughest (Rst) functioning redundantly in the founder cell and Sticks-and-stones (Sns) serving as their ligand in the FCMs. Previous studies have not resolved the role of Hibris (Hbs), a paralog of Sns, suggesting that it functions as a positive regulator of myoblast fusion and as a negative regulator that antagonizes the activity of Sns. The results herein resolve this issue, demonstrating that sns and hbs function redundantly in the formation of several muscle precursors, and that loss of one copy of sns enhances the myoblast fusion phenotype of hbs mutants. We further show that excess Hbs rescues some fusion in sns mutant embryos beyond precursor formation, consistent with its ability to drive myoblast fusion, but show using chimeric molecules that Hbs functions less efficiently than Sns. In conjunction with a physical association between Hbs and SNS in cis, these data account for the previously observed UAS-hbs overexpression phenotypes. Lastly, we demonstrate that either an Hbs or Sns cytodomain is essential for muscle precursor formation, and signaling from IgSF members found exclusively in the founder cells is not sufficient to direct precursor formation.
Collapse
Affiliation(s)
- Claude Shelton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
18
|
Guerin CM, Kramer SG. RacGAP50C directs perinuclear gamma-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. Development 2009; 136:1411-21. [PMID: 19297411 DOI: 10.1242/dev.031823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The microtubule (MT) cytoskeleton is reorganized during myogenesis as individual myoblasts fuse into multinucleated myotubes. Although this reorganization has long been observed in cell culture, these findings have not been validated during development, and proteins that regulate this process are largely unknown. We have identified a novel postmitotic function for the cytokinesis proteins RacGAP50C (Tumbleweed) and Pavarotti as essential regulators of MT organization during Drosophila myogenesis. We show that the localization of the MT nucleator gamma-tubulin changes from diffuse cytoplasmic staining in mononucleated myoblasts to discrete cytoplasmic puncta at the nuclear periphery in multinucleated myoblasts, and that this change in localization depends on RacGAP50C. RacGAP50C and gamma-tubulin colocalize at perinuclear sites in myotubes, and in RacGAP50C mutants gamma-tubulin remains dispersed throughout the cytoplasm. Furthermore, we show that the mislocalization of RacGAP50C in pavarotti mutants is sufficient to redistribute gamma-tubulin to the muscle fiber ends. Finally, myotubes in RacGAP50C mutants have MTs with non-uniform polarity, resulting in multiple guidance errors. Taken together, these findings provide strong evidence that the reorganization of the MT network that has been observed in vitro plays an important role in myotube extension and muscle patterning in vivo, and also identify two molecules crucial for this process.
Collapse
Affiliation(s)
- Colleen M Guerin
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|