1
|
Roshdy A, Abdel Salam R, Hadad G, Belal F, Elmansi H. Design-assisted HPLC-UV method for therapeutic drug monitoring of pholcodine, ephedrine, and guaifenesin in biological fluids. Sci Rep 2024; 14:27933. [PMID: 39537794 PMCID: PMC11560963 DOI: 10.1038/s41598-024-78793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Drug-drug interactions may amplify or diminish their intended effects, or even produce entirely new effects. Multicomponent mixture HPLC analysis offers a thorough and effective method for comprehending the makeup and behavior of complicated materials, advancing research and development across a range of scientific and industrial domains. A novel experimental design-assisted HPLC methodology for the concurrent investigation of the drug-drug interaction of pholcodine, ephedrine, and guaifenesin in biological fluids has been established. Rather than the routine methodology, the application of the factorial design-HPLC method offers a powerful and efficient tool for the analysis of these compounds. Both mixed and full factorial designs were employed to assess the impact of variable factors on chromatographic results. Utilizing an isocratic elution mode on a C18 column, the chromatographic separation was carried out. 15% Methanol, 5% acetonitrile, and 80% phosphate buffer with 0.1%(v/v) triethylamine set to pH 3 make up the mobile phase flowing at rate 1.0 mL/min. The calibration curves of the drugs show excellent linearity over a concentration ranges: 0.20-13.0 µg/mL for PHO, 0.50-20.0 µg/mL for EPH and 0.70-20.0 µg/mL for GUA with LOQ values of 0.18, 0.38 and 0.50. The fast separation and quantitation in less than 6 min is an advantage. Also, the method includes a robust sample preparation protocol for the analysis of complex biological samples, ensuring high selectivity and precision. The ease, speed and cost-effectiveness of the method are ideal for supporting in vitro studies, including drug-drug interaction investigations, especially in bioanalytical labs.
Collapse
Affiliation(s)
- Aya Roshdy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy , Horus University, New Damietta, Egypt.
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Randa Abdel Salam
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Ghada Hadad
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Fathallah Belal
- Department of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
2
|
Abdelshafi NA, Darwish HW, Alanazi AS, Naguib IA, Elkhouly HH, Khodary NS, Mohamed EH. Voltammetric analysis of pholcodine on graphene-modified GNPs/PTs with green assessment. BMC Chem 2024; 18:48. [PMID: 38449002 PMCID: PMC10919016 DOI: 10.1186/s13065-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Pholcodine, an anti-tussive medication widely used as an over-the-counter, OTC drug, has recently faced restrictions in several countries. This paper presents a sensitive electrochemical approach for pholcodine detection. The electrochemical method involved fabricating a graphene nanoplatelets electrode, incorporating polythiophene nanospheres polymer to promote electron transfer and increase the activated surface area. Characterization of the fabricated electrode was performed using transmission electron microscopy, ATR-Fourier-transform infrared spectroscopy, X-ray crystallography, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The electrochemical behavior of pholcodine with the fabricated electrode was investigated using cyclic voltammetry, chronoamperometry, square wave voltammetry (SWV), and differential pulse voltammetry (DPV). The developed electrode led to a linear response for pholcodine ranging from 10 to 45 mg/L with detection limits of 1.41 and 1.51 mg/mL for SWV and DPV, respectively and quantification limits of 4.27 and 4.57 mg/L for SWV and DPV, respectively. The proposed method has accurately recovered pholcodine in spiked serum samples with a recovery percentage ranging from 1.2 to 2.9%. The optimized method is found to be accurate, precise, and robust by applying validation parameters provided by International Council for Harmonization. Two green metrics were computed to assess the method's greenness, the findings showed that the developed method is environmentally friendly with minimum sample preparation steps.
Collapse
Affiliation(s)
- Nahla A Abdelshafi
- Department of Pharmaceutical Analytical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ashwag S Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hadeer H Elkhouly
- School of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Nehal S Khodary
- School of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Cairo, 11837, Egypt
| |
Collapse
|
3
|
Mohamed HM, Zaazaa HE, Abdelkawy M, Tantawy MA. Exploiting the power of UPLC in separation and simultaneous determination of pholcodine, guaiacol along with three specified guaiacol impurities. BMC Chem 2023; 17:35. [PMID: 37055841 PMCID: PMC10099691 DOI: 10.1186/s13065-023-00949-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Pholcodine and guaiacol are widely used together in pharmaceutical syrups for cough treatment. On the other hand, the Ultra Performance Liquid Chromatographic technique is characterized by having the power of increasing chromatographic efficiency and decreasing run time compared to the traditional High Performance Liquid Chromatographic one. In this work, this power was exploited for the simultaneous determination of pholcodine, guaiacol along with three guaiacol impurities, namely; guaiacol impurity A, guaiacol impurity B, and guaiacol impurity E. Good separation was achieved by employing Agilent Zorbax C8 column (50 × 2.1 mm) as the stationary phase, and acetonitrile: phosphate buffer pH 3.5 (40: 60, by volume) as a mobile phase. The proposed method was validated as per International Council for Harmonisation guidelines. Linear relationships, at ranges of 50-1000 µg mL-1 for pholcodine and 5-100 µg mL-1 for guaiacol and the three related impurities, were established. Finally, the proposed method was applied for pholcodine and guaiacol determination in Coughpent® syrup and compared favorably to the reported one.
Collapse
Affiliation(s)
- Hager M Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, Cairo, 11562, Egypt
| | - M Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, Cairo, 11562, Egypt
| | - Mahmoud A Tantawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, Cairo, 11562, Egypt.
- Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| |
Collapse
|
4
|
Ahmadi M, Mokhtari A, Bahlakeh G, Karimian H. Flow Injection Chemiluminescence Determination of Ethion and Computational Investigation of the Adsorption Process on Molecularly Imprinted Polymerized High Internal Phase Emulsion. LUMINESCENCE 2022; 37:1514-1523. [PMID: 35816014 DOI: 10.1002/bio.4325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The lack of sufficient selectivity is the main limitation of chemiluminescence (CL) methods; because the CL reagent is not restricted to a specific analyte. This study investigated the preconcentration and determination of ethion by a flow injection CL (FIA-CL) method using a molecularly imprinted poly high internal phase emulsion (MIP-polyHIPE) adsorbent. Preliminary studies showed that ethion could be determined with high sensitivity in the Ru (bipy)3 2+ -acidic Ce (IV) CL system. A MIP-polyHIPE adsorbent was synthesized and used for preconcentration to increase the selectivity and sensitivity of the method. The adsorption of ethion on the adsorbent was investigated using density functional theory (DFT) and molecular dynamics (MD), UV-Vis and FTIR spectrophotometry and liquid chromatography-tandem mass spectrometry (LC-MS-MS). Response surface methodology (RSM) and central composite design (CCD) were used to find optimized concentrations of variables. The linear dynamic range (LDR) and limit of detection (LOD) for ethion in the FIA-CL method were calculated 1.0✕10-9 -2.0✕10-7 and 6.0✕10-10 mol L-1 , respectively. The percentage of relative standard deviation for 5 repetitive measurements of 5.0⨯10-8 mol L-1 ethion was 4.2%. The proposed method was successfully used to separate and preconcentrate ethion from drinking and surface water sources.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ali Mokhtari
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ghasem Bahlakeh
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Hossein Karimian
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| |
Collapse
|
5
|
Elmansi H, Belal F, Magdy G. Determination of pholcodine alone or in combination with ephedrine in human plasma using fluorescence spectroscopy. Sci Rep 2022; 12:9372. [PMID: 35672340 PMCID: PMC9174196 DOI: 10.1038/s41598-022-13194-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, sensitive, facile, and cost-effective spectrofluorimetric approaches were developed for the determination of pholcodine and ephedrine. Method I is a novel spectrofluorimetric method depending on measuring the native fluorescence of pholcodine at 337 nm after excitation at 284 nm over a concentration range of 0.01-2.4 μg/mL. The method sensitivity reached quantitation and detection limits down to 10.0 and 5.0 ng/mL, respectively. Method II relied on the simultaneous estimation of pholcodine and ephedrine using synchronous fluorimetry for the first time. The cited drugs were measured concurrently at 286 and 304 nm for pholcodine and ephedrine, respectively at Δλ of 40 nm without interference. Excellent linear relationship between concentration and response was obtained over the ranges of 0.05-6.0 μg/mL and 0.02-1.0 μg/mL for pholcodine and ephedrine, respectively. The method showed distinct sensitivity and exhibited quantitation limits of 20.0 and 10.0 ng/mL and detection limits of 10.0 and 5.0 ng/mL, respectively. The method was successfully applied to the syrup dosage form. The two developed approaches were also applied to in-vitro plasma samples, showing good bioanalytical applicability and providing further insights for monitoring drug abuse. The proposed methods were validated according to ICHQ2(R1) guidelines. The proposed methodologies' greenness profiles were evaluated using two greenness assessment tools.
Collapse
Affiliation(s)
- Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33511, Kafrelsheikh, Egypt.
| |
Collapse
|
6
|
Mokhtari A, Barati M, Karimian H, Keyvanfard M. A molecularly imprinted polymerized high internal phase emulsion adsorbent for sensitive chemiluminescence determination of clopidogrel. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120371. [PMID: 34536890 DOI: 10.1016/j.saa.2021.120371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
A molecularly imprinted polymerized high internal phase emulsion (MIP-polyHIPE) adsorbent was used for selective separating and preconcentrating the anti-plaque drug, clopidogrel. For the first time in this study, chemiluminescence (CL) methods were evaluated for the determination of clopidogrel. The synthesis of adsorbents by the emulsion templating method showed that the sensitivity of the method can be increased up to 42 times. The determination of clopidogrel was evaluated by Ru(phen)32+-Cerium (IV), KMnO4-H2SO4, KMnO4-H2SO4-Na2SO3, and luminol-H2O2 CL systems. According to the results, only the Ru(phen)32+-Cerium (IV) CL system showed a reasonable sensitivity for clopidogrel. Using MIP-polyHIPE adsorbent, the linear range, the limit of detection, and relative standard deviation for clopidogrel in this system were respectively 1.0 × 10-9-8.0 × 10-8 mol L-1, 3.0 × 10-10 mol L-1, and 6.3% (n = 4, 1.0 × 10-8). The proposed method was employed for determining clopidogrel in pharmaceuticals and blood serum samples. The results showed the good sensitivity and accuracy of the proposed method.
Collapse
Affiliation(s)
- Ali Mokhtari
- Department of Chemistry, Golestan University, Gorgan, Iran.
| | - Mozhdeh Barati
- Department of Chemistry, Golestan University, Gorgan, Iran
| | - Hossein Karimian
- Department of Chemical Engineering, Golestan University, Aliabad Katool, Iran
| | - Mohsen Keyvanfard
- Department of Chemistry, Majlesi Branch, Islamic Azad University, Majlesi, Iran
| |
Collapse
|
7
|
Abd-Rabboh HSM, E. Amr AEG, Almehizia AA, Kamel AH. All-Solid-State Potentiometric Ion-Sensors Based on Tailored Imprinted Polymers for Pholcodine Determination. Polymers (Basel) 2021; 13:polym13081192. [PMID: 33917178 PMCID: PMC8067864 DOI: 10.3390/polym13081192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
In recent times, the application of the use of ion-selective electrodes has expanded in the field of pharmaceutical analyses due to their distinction from other sensors in their high selectivity and low cost of measurement, in addition to their high measurement sensitivity. Cost-effective, reliable, and robust all-solid-state potentiometric selective electrodes were designed, characterized, and successfully used for pholcodine determination. The design of the sensor device was based on the use of a screen-printed electrode modified with multiwalled carbon nanotubes (MWCNTs) as a solid-contact transducer. Tailored pholcodine (PHO) molecularly imprinted polymers (MIPs) were prepared, characterized, and used as sensory receptors in the presented potentiometric sensing devices. The sensors exhibited a sensitivity of 31.6 ± 0.5 mV/decade (n = 5, R2 = 0.9980) over the linear range of 5.5 × 10−6 M with a detection limit of 2.5 × 10−7 M. Real serum samples in addition to pharmaceutical formulations containing PHO were analyzed, and the results were compared with those obtained by the conventional standard liquid chromatographic approach. The presented analytical device showed an outstanding efficiency for fast, direct, and low-cost assessment of pholcodine levels in different matrices.
Collapse
Affiliation(s)
- Hisham S. M. Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Abd El-Galil E. Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- National Research Center, Applied Organic Chemistry Department, Dokki, Giza 12622, Egypt
- Correspondence: (A.E.-G.E.A.); (A.H.K.); Tel.: +966-565-148-750 (A.E.-G.E.A.); +20-1000361328 (A.H.K.)
| | - Abdulrahman A. Almehizia
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ayman H. Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.E.-G.E.A.); (A.H.K.); Tel.: +966-565-148-750 (A.E.-G.E.A.); +20-1000361328 (A.H.K.)
| |
Collapse
|
8
|
Abd-Rabboh HSM, El-Galil E. Amr A, A. Elsayed E, Sayed AYA, Kamel AH. Paper-based potentiometric sensing devices modified with chemically reduced graphene oxide (CRGO) for trace level determination of pholcodine (opiate derivative drug). RSC Adv 2021; 11:12227-12234. [PMID: 35685818 PMCID: PMC9131362 DOI: 10.1039/d1ra00581b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/18/2021] [Indexed: 12/03/2022] Open
Abstract
Robust, reliable and cost-effective paper-based analytical device for potentiometric pholcodine (opiate derivative drug) ion sensing has been prepared and characterized. A printed pholcodinium (PHL)2+/5-nitrobarbiturate (NB)− ion-association complex as a sensory material-based all-solid-state ion-selective electrode (ISE) on a chemically reduced graphene oxide (CRGO) solid-contact, and a printed all-solid-state Ag/AgCl reference electrode, has been combined on a hydrophobic paper substrate coated with fluorinated alkyl silane (CF3(CF2)7CH2CH2SiCl3, CF10). The sensors revealed a potentiometric slope of 28.7 ± 0.3 mV dec−1 (R2 = 0.9998) over a linear range starting from 2.0 × 10−7 M to 1.0 × 10−2 M and a detection limit of 0.04 μg mL−1. The repeatability and stability of the pholcodine paper-based sensor was found to be 2.32%. The RSD% (n = 6) was found to be 2.67% when using five different paper-based sensors. The sensor revealed an excellent selectivity towards PHL over dextromethorphan, codeine, ephedrine, carbinoxamine, caffeine, ketamine, and K+, Na+ and Ca2+ ions. It showed a good recovery (94–104%) for the determination of PHL in different artificial serum samples. The presented paper-based analytical device was successfully introduced for PHL determination in different pharmaceutical formulations (i.e. syrups and suspensions) containing pholcodine. The current work can be considered as a promising possible analytical tool to obtain cost-effective and disposable paper-based potentiometric sensing devices. These devices can be potentially manufacturable at large scales in pharmaceutical, clinical and forensic applications for opiate drug assessment. Robust, reliable and cost-effective paper-based analytical device for potentiometric pholcodine (opiate derivative drug) ion sensing has been prepared and characterized.![]()
Collapse
Affiliation(s)
| | - Abd El-Galil E. Amr
- Pharmaceutical Chemistry Department
- Drug Exploration & Development Chair (DEDC)
- College of Pharmacy
- King Saud University
- Riyadh 11451
| | - Elsayed A. Elsayed
- Zoology Department
- Faculty of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Ahmed Y. A. Sayed
- Pharmaceutical Chemistry Department
- Drug Exploration & Development Chair (DEDC)
- College of Pharmacy
- King Saud University
- Riyadh 11451
| | - Ayman H. Kamel
- Department of Chemistry
- Faculty of Science
- Ain Shams University
- Cairo 11566
- Egypt
| |
Collapse
|