1
|
Munusamy S, Mandlimath TR, Swetha P, Al-Sehemi AG, Pannipara M, Koppala S, Paramasivam S, Boonyuen S, Pothu R, Boddula R. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. ENVIRONMENTAL RESEARCH 2023; 231:116046. [PMID: 37150390 DOI: 10.1016/j.envres.2023.116046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Angkok, 10330, Pathumwan, Thailand.
| | - Triveni Rajashekhar Mandlimath
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, G-30, Inavolu, Besides AP Secretariat Amaravati, Andhra Pradesh, India
| | - Puchakayala Swetha
- Department of Chemistry, Oakland University, Rochester, MI, 48309, United States
| | | | | | - Sivasankar Koppala
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Shanmugam Paramasivam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Ramyakrishna Pothu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University Doha, 2713, Qatar.
| |
Collapse
|
2
|
Krishnapriya TK, Prasanth S, Deepti A, Baby Chakrapani PS, Asha AS, Jayaraj MK. Ultrafast detection of folic acid in nanomolar levels and cancer cell imaging using hydrothermally synthesized carbon dots. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
|
4
|
Wang X, Duan Q, Zhang B, Cheng X, Wang S, Sang S. Ratiometric fluorescence detection of Cd2+ based on N, S co-doped carbon quantum dots/Au nanoclusters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Ansari L, Hallaj S, Hallaj T, Amjadi M. Doped-carbon dots: Recent advances in their biosensing, bioimaging and therapy applications. Colloids Surf B Biointerfaces 2021; 203:111743. [PMID: 33872828 DOI: 10.1016/j.colsurfb.2021.111743] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022]
Abstract
As a fascinating class of fluorescent carbon dots (CDs), doped-CDs are now sparked intense research interest, particularly in the diverse fields of biomedical applications due to their unique advantages, including low toxicity, physicochemical, photostability, excellent biocompatibility, and so on. In this review, we have summarized the most recent developments in the literature regarding the employment of doped-CDs for pharmaceutical and medical applications, which are published over approximately the past five years. Accordingly, we discuss the toxicity and optical properties of these nanomaterials. Beyond the presentation of successful examples of the application of these multifunctional nanoparticles in photothermal therapy, photodynamic therapy, and antibacterial activity, we further highlight their application in the cellular labeling, dual imaging, and in vitro and in vivo bioimaging by use of fluorescent-, photoacoustic-, magnetic-, and computed tomography (CT)-imaging. The potency of doped-CDs was also described in the biosensing of ions, small molecules, and drugs in biological samples or inside the cells. Finally, the advantages, disadvantages, and common limitations of doped-CD technologies are reviewed, along with the future prospects in biomedical research. Therefore, this review provides a concise insight into the current developments and challenges in the field of doped-CDs, especially for biological and biomedical researchers.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Shahin Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
6
|
Li LS, Xu L. Highly fluorescent N,S,P tri-doped carbon dots for Cl− detection and their assistance of TiO2 as the catalyst in the degradation of methylene blue. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Kim K, Chokradjaroen C, Saito N. Solution plasma: new synthesis method of N-doped carbon dots as ultra-sensitive fluorescence detector for 2,4,6-trinitrophenol. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abb9fa] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Herein, we report the synthesis of nitrogen-doped carbon dots (NCDs) through solution plasma (SP) for the first time. The SP method occurs a rapid dissociation of molecules, such as organic compounds, caused by an electrical discharge between electrodes immersed in a solution. The dissociation can result in the creation of various radicals such as ·C2, ·CN, and ·H which enable the rapid synthesis of carbon dots (CDs). The unique reaction of radicals allowed the formation of CDs with high N concentration and functionalization of the surface in a short time. In this study, by using the SP method, a very fine NCDs with size of 6 nm were synthesized from a pyridine/water mixture in just 10 min. Bright blue fluorescence (410 nm) with a high quantum yield (61%) was observed due to the high N concentration and the surface passivation. From the potential application point of view, the synthesized NCDs showed an excellent detection property for 2,4,6-trinitrophenol (TNP) by fluorescence quenching effect. It was due to rich amino-functional groups which act as a reaction pathway to TNP. This phenomenon was caused by the synergetic effect of a photo-induced electron transfer with the assistance of proton transfer-assisted electron transfer.
Collapse
|
8
|
Ganesan M, Nagaraaj P. Quantum dots as nanosensors for detection of toxics: a literature review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4254-4275. [PMID: 32940270 DOI: 10.1039/d0ay01293a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Great advances have been made in sensor-based methods for chemical analysis owing to their high sensitivity, selectivity, less testing time, and minimal usage of chemical reagents. Quantum Dots (QDs) having excellent optical properties have been thoroughly explored for variety of scientific applications wherein light plays an important role. In recent years, there have been an increasing number of publications on the applications of QDs as photoluminescent nanosensors for the detection of chemicals and biomolecules. However, there has been hardly any publication describing the use of QDs in the detection of various toxic chemicals at one place. Hence, a literature survey has been made on the applications of QDs as chemosensors for the detection of gaseous, anionic, phenolic, metallic, drug-overdose, and pesticide poison so as to open a new perspective towards the role of sensors in analytical toxicology. In this review, the QD-based analysis of biospecimens for poison detection in clinical and forensic toxicology laboratories is highlighted.
Collapse
Affiliation(s)
- Muthupandian Ganesan
- Toxicology Division, Regional Forensic Science Laboratory, Forensic Sciences Department, Forensic House, Chennai-4, India.
| | | |
Collapse
|
9
|
Song S, Hu J, Li M, Gong X, Dong C, Shuang S. Fe 3+ and intracellular pH determination based on orange fluorescence carbon dots co-doped with boron, nitrogen and sulfur. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111478. [PMID: 33255057 DOI: 10.1016/j.msec.2020.111478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
The fluorescent boron, nitrogen and sulfur co-doped carbon dots (BNSCDs) were prepared by simple hydrothermal reaction of 4-carboxyphenylboronic acid and 2,5-diaminobenzenesulfonic acid at 200 °C for 8 h. The fluorescence of the BNSCDs could be quenched by Fe3+ based on the electron transfer between Fe3+ and BNSCDs, so a label-free, good selectivity and high sensitivity method for Fe3+determination was established with linear range and LOD of 1.5-692 μmol/L and 87 nmol/L, respectively. And then the fluorescent probe was employed for detection of Fe3+ in tap water, coal gangue, fly ash and food samples successfully. Moreover, the as-prepared BNSCDs could serve as a novel pH fluorescent probe in the range of pH 1.60-7.00, which could be attributed to the proton transfer of carboxyl groups on the surface of BNSCDs. More importantly, the pH fluorescent probe possesses fast, real-time and low toxicity, applying for intracellular pH fluorescence imaging in HIC, HIEC, LO2 and SMMC7721 cells. In view of its simplicity, timely response and outstanding compatibility, the as-fabricated BNSCDs show the potential applications in water quality and solid waste monitoring, food detection, real-time measuring of intracellular pH change in vitro.
Collapse
Affiliation(s)
- Shengmei Song
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Junhui Hu
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Minglu Li
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Xiaojuan Gong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Chuan Dong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
10
|
Kanathasan JS, Gunasagaram D, Khan SU, Palanisamy UD, Radhakrishnan AK, Ahemad N, Swamy V. Linear versus Branched Peptide with Same Amino Acid Sequence for Legumain‐Targeting in Macrophages: Targeting Efficiency and Bioimaging Potential. ChemistrySelect 2020. [DOI: 10.1002/slct.202002161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jayasree S. Kanathasan
- Mechanical Engineering Discipline School of Engineering Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Diivananthan Gunasagaram
- Mechanical Engineering Discipline School of Engineering Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Shafi Ullah Khan
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Uma D. Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Nafees Ahemad
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Varghese Swamy
- Mechanical Engineering Discipline School of Engineering Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| |
Collapse
|
11
|
Duan Q, Wang X, Zhang B, Li Y, Zhang W, Zhang Y, Sang S. A fluorometric method for mercury(II) detection based on the use of pyrophosphate-modified carbon quantum dots. Mikrochim Acta 2019; 186:736. [DOI: 10.1007/s00604-019-3872-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
12
|
Sharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnology 2019; 17:92. [PMID: 31451110 PMCID: PMC6709552 DOI: 10.1186/s12951-019-0525-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
Carbon dots (CDs) are the new fellow of carbon family having a size less than 10 nm and attracted much attention of researchers since the last decade because of their unique characteristics, such as inexpensive and facile synthesis methods, easy surface modification, excellent photoluminescence, outstanding water solubility, and low toxicity. Due to these unique characteristics, CDs have been extensively applied in different kind of scientific disciplines. For example in the photocatalytic reactions, drug-gene delivery system, in vitro and in vivo bioimaging, chemical and biological sensing as well as photodynamic and photothermal therapies. Mainly two types of methods are available in the literature to synthesize CDs: the top-down approach, which refers to breaking down a more massive carbon structure into nanoscale particles; the bottom-up approach, which refers to the synthesis of CDs from smaller carbon units (small organic molecules). Many review articles are available in the literature regarding the synthesis and applications of CDs. However, there is no such review article describing the synthesis and complete application of CDs derived from small organic molecules together. In this review, we have summarized the progress of research on CDs regarding its synthesis from small organic molecules (bottom-up approach) via hydrothermal/solvothermal treatment, microwave irradiation, ultrasonic treatment, and thermal decomposition techniques as well as applications in the field of bioimaging, drug/gene delivery system, fluorescence-based sensing, photocatalytic reactions, photo-dynamic therapy (PDT) and photo-thermal (PTT) therapy based on the available literature. Finally, the challenges and future direction of CDs are discussed.
Collapse
Affiliation(s)
- Anirudh Sharma
- School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Solan, HP, 173229, India
| | - Joydeep Das
- School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Solan, HP, 173229, India.
| |
Collapse
|
13
|
Recent Advancements in Doped/Co-Doped Carbon Quantum Dots for Multi-Potential Applications. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon quantum dots (CQDs)/carbon nanodots are a new class of fluorescent carbon nanomaterials having an approximate size in the range of 2–10 nm. The majority of the reported review articles have discussed about the development of the CQDs (via simple and cost-effective synthesis methods) for use in bio-imaging and chemical-/biological-sensing applications. However, there is a severe lack of consolidated studies on the recently developed CQDs (especially doped/co-doped) that are utilized in different areas of application. Hence, in this review, we have extensively discussed about the recent development in doped and co-doped CQDs (using elements/heteroatoms—e.g., boron (B), fluorine (F), nitrogen (N), sulphur (S), and phosphorous (P)), along with their synthesis method, reaction conditions, and/or quantum yield (QY), and their emerging multi-potential applications including electrical/electronics (such as light emitting diode (LED) and solar cells), fluorescent ink for anti-counterfeiting, optical sensors (for detection of metal ions, drugs, and pesticides/fungicides), gene delivery, and temperature probing.
Collapse
|
14
|
Peng X, Li C, Zhang Y, Chen S, Long Y. Carbon dots synthesized by the
m
‐trihydroxybenzene as the carbon source and its application on the detection of pH value. LUMINESCENCE 2019; 34:341-346. [DOI: 10.1002/bio.3613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoxiao Peng
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Chenchen Li
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Yubing Zhang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Shu Chen
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Yunfei Long
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| |
Collapse
|
15
|
Chan KK, Yap SHK, Yong KT. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. NANO-MICRO LETTERS 2018; 10:72. [PMID: 30417004 PMCID: PMC6208800 DOI: 10.1007/s40820-018-0223-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage, and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties, as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them. Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers, nitroaromatic explosives, pollutants, vitamins, and drugs. Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
Collapse
Affiliation(s)
- Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephanie Hui Kit Yap
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
16
|
Sun Q, Long Y, Pan S, Liu H, Yang J, Hu X. Carbon dot-based fluorescent probes for sensitive and selective detection of luteolin through the inner filter effect. LUMINESCENCE 2018; 33:1401-1407. [DOI: 10.1002/bio.3562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Qianqian Sun
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Yuwei Long
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Shuang Pan
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Hui Liu
- College of Pharmaceutical Sciences; Southwest University; Chongqing China
| | - Jidong Yang
- College of Chemical and Environmental Engineering; Chongqing Three Gorges University; Wanzhou Chongqing China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| |
Collapse
|
17
|
Das P, Ganguly S, Mondal S, Ghorai UK, Maity PP, Choudhary S, Gangopadhyay S, Dhara S, Banerjee S, Das NC. Dual doped biocompatible multicolor luminescent carbon dots for bio labeling, UV-active marker and fluorescent polymer composite. LUMINESCENCE 2018; 33:1136-1145. [DOI: 10.1002/bio.3520] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/27/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Poushali Das
- School of Nanoscience and Technology; Indian Institute of Technology; Kharagpur India
| | - Sayan Ganguly
- Rubber Technology Center; Indian Institute of Technology; Kharagpur India
| | - Subhadip Mondal
- Rubber Technology Center; Indian Institute of Technology; Kharagpur India
| | - Uttam Kumar Ghorai
- Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Center; Ramakrishna Mission Vidyamandira; Belur Math Howrah India
| | - Priti Prasanna Maity
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur India
| | - Sumita Choudhary
- Department of Physics; Birla Institute of Technology and Science; Pilani Rajasthan India
| | - Subhashis Gangopadhyay
- Department of Physics; Birla Institute of Technology and Science; Pilani Rajasthan India
| | - Santanu Dhara
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur India
| | - Susanta Banerjee
- Materials Science Center; Indian Institute of Technology; Kharagpur India
| | - Narayan Ch. Das
- School of Nanoscience and Technology; Indian Institute of Technology; Kharagpur India
- Rubber Technology Center; Indian Institute of Technology; Kharagpur India
| |
Collapse
|