1
|
Luo K, Luo W, Liang Z, Li Y, Kang X, Wu Y, Wen Y. Self-doping synthesis of iodine–carbon quantum dots for sensitive detection of Fe( iii) and cellular imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj03474c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodine-doped carbon quantum dots (I-CQDs) were synthesized via p-iodobenzoic acid self-doping for the detection of ferric ions (Fe3+) and cell imaging.
Collapse
Affiliation(s)
- Kun Luo
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenyi Luo
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhibin Liang
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yubin Li
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xinhuang Kang
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yulian Wu
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanmei Wen
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Gavalas S, Kelarakis A. Towards Red Emissive Systems Based on Carbon Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2089. [PMID: 34443920 PMCID: PMC8400426 DOI: 10.3390/nano11082089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Carbon dots (C-dots) represent an emerging class of nontoxic nanoemitters that show excitation wavelength-dependent photoluminescence (PL) with high quantum yield (QY) and minimal photobleaching. The vast majority of studies focus on C-dots that exhibit the strongest PL emissions in the blue/green region of the spectrum, while longer wavelength emissions are ideal for applications such as bioimaging, photothermal and photodynamic therapy and light-emitting diodes. Effective strategies to modulate the PL emission of C-dot-based systems towards the red end of the spectrum rely on extensive conjugation of sp2 domains, heteroatom doping, solvatochromism, surface functionalization and passivation. Those approaches are systematically presented in this review, while emphasis is given on important applications of red-emissive suspensions, nanopowders and polymer nanocomposites.
Collapse
Affiliation(s)
| | - Antonios Kelarakis
- UCLan Research Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| |
Collapse
|
3
|
Mi G, Yang M, Wang C, Zhang B, Hu X, Hao H, Fan J. A simple "turn off-on" ratio fluorescent probe for sensitive detection of dopamine and lysine/arginine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119555. [PMID: 33607446 DOI: 10.1016/j.saa.2021.119555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Herein, a novel and unique "off-on" single-excited dual-emissive ratio fluorescence sensor for highly selective and sensitive detection of dopamine and lysine/arginine has been developed via covalently connecting the yellowish-green fluorescent carbon dots (CDs) with the orange-red fluorescent AgInSe2@ZnS quantum dots (AISe QDs). This ratiometric fluorescence sensor provided with two-emission peaks at 495 and 575 nm under a single-excitation wavelength of 395 nm. The fluorescence of AISe QDs (F575) is effective quenched by dopamine and only efficientlyrecovered by lysine/arginine; meanwhile, the light of CDs (F495) remains unchanged. The fluorescence intensity ratio (F495/F575) showed a linear relationship with the concentration of DA in the range of 0-100 μM, and the detection limit as low as 0.21 nM. lysine and arginine with the detection limit of 0.36 nM and 26 μM, respectively. Furthermore, the fluorescence probe is successfully used to detect DA in human serum. Therefore, the as-synthesized probe shows excellent potential application for the determination of DA in real samples.
Collapse
Affiliation(s)
- Guohua Mi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Min Yang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Cunjin Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Bin Zhang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Xiaoyun Hu
- School of Physics, Northwest University, Xi'an 710069, PR China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Jun Fan
- College of Food Science and Engineering, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
4
|
Emami E, Mousazadeh MH. pH-responsive zwitterionic carbon dots for detection of rituximab antibody. LUMINESCENCE 2021; 36:1198-1208. [PMID: 33749984 DOI: 10.1002/bio.4045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 01/25/2023]
Abstract
Zwitterionic carbon dots (CDs) have received much attention as a result of good photostability, high biocompatibility, and high quantum yield. In this study, novel zwitterionic CDs were synthesized using a simple hydrothermal method of citric acid (CA) and l-histidine as carbon and nitrogen precursors, respectively. Prepared zwitterionic CDs have an average particle size of 4 nm diameter and showed green fluorescence with a peak at 530 nm when excited at 470 nm; quantum efficiency was 39.34% using rhodamine 6G as a baseline. The fluorescence intensity of zwitterionic CDs was quenched by rituximab in the range 0-400 μmol L-1 , with a limit of detection of 27 μmol L-1 . In addition, the synthesized zwitterionic CDs had low toxicity, good stability, and high selectivity and sensitivity sensing for rituximab, therefore zwitterionic CDs are a promising candidate for practical applications.
Collapse
Affiliation(s)
- Elham Emami
- Department of Chemistry, Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box: 15875-4413, Tehran, Iran
| | - Mohammad H Mousazadeh
- Department of Chemistry, Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box: 15875-4413, Tehran, Iran
| |
Collapse
|
5
|
Ran Y, Wang S, Yin Q, Wen A, Peng X, Long Y, Chen S. Green synthesis of fluorescent carbon dots using chloroplast dispersions as precursors and application for Fe 3+ ion sensing. LUMINESCENCE 2020; 35:870-876. [PMID: 32142218 DOI: 10.1002/bio.3794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Water-soluble carbon dots (CDs) were synthesized using a one-step hydrothermal treatment of chloroplast dispersions extracted from fresh leaves as a green carbon source. The CD solution showed an emission peak centred at 445 nm when excited at 300 nm. The synthesized CDs were uniform and monodispersed with an average size of 5.6 nm. When adding ferric(III) ions (Fe3+ ) to the solution of the original CDs, the fluorescence intensity decreased significantly. Based on the linear relationship between fluorescence intensity and concentration of Fe3+ ions, an effective method for rapid, sensitive and selective Fe3+ sensing in aqueous solution could be established. Under optimum conditions, the extent of the fluorescence quenching of prepared CDs strongly depended on the Fe3+ ions over a wide concentration range 1.0-100.0 μM with a detection limit (3σ/k) of 0.3 μM. Furthermore, the quantitative determination of Fe3+ ions in environmental water samples was realized.
Collapse
Affiliation(s)
- Yong Ran
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shaoyu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Qianye Yin
- College of Chemistry, Northeast Normal University, Changchun, Jilin, China
| | - Aoli Wen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xiaoxiao Peng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yunfei Long
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|