1
|
Cui J, Lian D, Li Y, Du Y, Qu Z, Zhang X, Li L. Inhibition of coreopsin against α-amylase/α-glucosidase and synergy with acarbose. Food Chem 2025; 464:141610. [PMID: 39514938 DOI: 10.1016/j.foodchem.2024.141610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Coreopsin is a flavonoid from Coreopsis tinctoria. The inhibition of coreopsin and synergy with acarbose against α-amylase (PPA) or α-glucosidase (SCG) were explored. As a result, coreopsin exhibited stronger inhibition on PPA/SCG than that of acarbose. Combination of coreopsin (4.11 μM) with acarbose (132.77 μM) had significant synergistic effect on PPA, while combination of coreopsin (5.76 μM) and acarbose (121.7 μM) had significant synergy on SCG. Coreopsin, acarbose and acarbose-coreopsin inhibited PPA in mixed-type mode. Acarbose competitively inhibited SCG, whereas coreopsin and acarbose-coreopsin inhibited SCG in mixed-type mode. Fluorescence analysis conformed that coreopsin could synergize with acarbose by increasing the binding ability of acarbose to PPA/SCG. Compared with acarbose or coreopsin, acarbose-coreopsin complexes resulted in more conformational changes of PPA/SCG, revealing that the complexes had stronger inhibitory ability than acarbose or coreopsin alone. The detail binding information of coreopsin, acarbose or acarbose-coreopsin to PPA /SCG was revealed by computer simulation.
Collapse
Affiliation(s)
- Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yuan Li
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yutong Du
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zihan Qu
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xue Zhang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
2
|
Wang A, Xie M, Wu L. Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate. Foods 2024; 13:3601. [PMID: 39594016 PMCID: PMC11593304 DOI: 10.3390/foods13223601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The influence of inulin on the interaction of sophoricoside (Sop) with whey protein concentrate (WPC) was investigated using various spectroscopic methods, including fluorescence spectroscopy (intrinsic fluorescence, synchronous fluorescence, and three-dimensional fluorescence), ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and molecular docking. Sop was found to quench the intrinsic fluorescence of WPC by a static mechanism, both with and without the addition of inulin, and to enhance the antioxidant capacity of the protein. The addition of inulin slightly increased the binding distance between WPC and Sop, while reducing the number of binding sites from two to one. Non-covalent interactions, predominantly van der Waals forces and hydrogen bonding, were maintained between Sop and the protein. Synchronous fluorescence spectroscopy revealed that Sop prevents the exposure of hydrophobic groups on tryptophan residues, leading to increased surface hydrophilicity of the WPC complex. This aligns with the decreased protein surface hydrophobicity measured by 8-Anilino-1-naphthalenesulfonic acid (ANS) binding assays. With inulin, the overall hydrophobicity of the protein was lower than in the system without inulin, suggesting that both inulin and Sop improve the solubility of WPC. Three-dimensional fluorescence spectral analysis showed a reduction in fluorescence intensity and a red shift in the presence of both Sop and inulin. FTIR spectroscopy indicated a slight increase in the secondary structure ordering of WPC following the addition of both Sop and inulin, suggesting structural stabilization under heating conditions. Molecular docking highlighted the potential for hydrogen bond formation between Sop and WPC.
Collapse
Affiliation(s)
- Anna Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyang Xie
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
| | - Ligen Wu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
| |
Collapse
|
3
|
Tao Y, Fan Y, Wang M, Wang S, Cui JJ, Lian D, Lu S, Li L. Comparative study of the interaction mechanism of astilbin, isoastilbin, and neoastilbin with CYP3A4. LUMINESCENCE 2023; 38:1654-1667. [PMID: 37421260 DOI: 10.1002/bio.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The interactions of human CYP3A4 with three selected isomer flavonoids, such as astilbin, isoastilbin and neoastilbin, were clarified using spectral analysis, molecular docking, and molecular dynamics simulation. During binding with the three flavonoids, the intrinsic fluorescence of CYP3A4 was statically quenched in static mode with nonradiative energy conversion. The fluorescence and ultraviolet/visible (UV/vis) data revealed that the three flavonoids had a moderate and stronger binding affinity with CYP3A4 due to the order of the Ka1 and Ka2 values ranging from 104 to 105 L·mol-1 . In addition, astilbin had the highest affinity with CYP3A4, then isoastilbin and neoastilbin, at the three experimental temperatures. Multispectral analysis confirmed that binding of the three flavonoids resulted in clear changes in the secondary structure of CYP3A4. It was found from fluorescence, UV/vis and molecular docking analyses that these three flavonoids strongly bound to CYP3A4 by means of hydrogen bonds and van der Waals forces. The key amino acids around the binding site were also elucidated. Furthermore, the stabilities of the three CYP3A4 complexes were evaluated using molecular dynamics simulation.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Jing Jing Cui
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Shuning Lu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
4
|
Ding S, Lu G, Wang B, Xiang J, Hu C, Lin Z, Ding Y, Xiao W, Gong W. Astilbin Activates the Reactive Oxidative Species/PPARγ Pathway to Suppress Effector CD4 + T Cell Activities via Direct Binding With Cytochrome P450 1B1. Front Pharmacol 2022; 13:848957. [PMID: 35652039 PMCID: PMC9150850 DOI: 10.3389/fphar.2022.848957] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Astilbin, as a compound of flavonoids, exerts anti-inflammation, antioxidation, and immune-suppression activities. Decreased activation of NF-κB and p38 MAPK and increased activation of SOCS3 and AMPK have been found in astilbin-treated cells. However, what molecules are docked by astilbin to initiate signaling cascades and result in functional changes remains unknown. In the study, we found that astilbin efficiently suppressed TNF-α production and increased CCR9 and CD36 expression of CD4+ T cells. In vivo administration of astilbin repressed the occurrence of type 1 diabetes mellitus in non-obese diabetic mice. The PPARγ/SOCS3, PPARγ/PTEN, and PPARγ/AMPK signaling pathways were substantially activated and played key roles in astilbin-induced downregulation of CD4+ T cell functions. Transcriptome sequencing results confirmed the changes of signaling molecules involved in the immune system, inflammatory responses, and indicated variations of multiple enzymes with oxidant or antioxidant activities. Astilbin directly induced cytoplasmic ROS production of CD4+ T cells ex vivo, but had no effects on mitochondrial ROS and mitochondrial weight. When cellular ROS was depleted, astilbin-treated CD4+ T cells remarkably reversed the expression of TNF-α, IFN-γ, CCR9, CD36, and signaling molecules (PPARγ, PTEN, p-AMPK, and SOCS3). Based on bioinformatics, two P450 enzymes (CYP1B1 and CYP19A1) were selected as candidate receptors for astilbin. CYP1B1 was identified as a real docking protein of astilbin in ROS production by AutoDock Vina software analysis and surface plasmon resonance assay. Collectively, astilbin downregulates effector CD4+ T cell activities via the CYP1B1/ROS/PPARγ pathway, which firmly supports its potential use in the treatment of inflammation.
Collapse
Affiliation(s)
- Shizhen Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Biying Wang
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Chunxia Hu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Zhijie Lin
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Tao Y, Chen R, Fan Y, Liu G, Wang M, Wang S, Li L. Interaction mechanism of pelargonidin against tyrosinase by multi-spectroscopy and molecular docking. J Mol Recognit 2022; 35:e2955. [PMID: 35076992 DOI: 10.1002/jmr.2955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
The interaction mechanism of pelargonidin (PG) with tyrosinase was investigated by multi-spectroscopy and molecular docking. As a result, PG had strong inhibitory activity on tyrosinase with the IC50 value of 41.94×10-6 mol·L-1 . The inhibition type of PG against tyrosinase was determined as a mixed mode. Meanwhile, the fluorescence of tyrosinase was quenched statically by PG, and accompanied by non-radiative energy transfer. The three-dimensional (3-D) fluorescence, ultraviolet-visible spectroscopy (UV-Vis) and circular dichroism spectroscopies (CD) indicated that PG decreased the hydrophobicity of the micro-environment around tryptophan (Trp) and tyrosine (Tyr), which resulted in the conformational change of tyrosinase. In addition, fluorescence and molecular docking analysis indicated that PG bound to tyrosinase via hydrogen bonds (H-bonds) and van der Waals force (vdW force). We herein recommended that PG might be a potential candidate drug for the treatment of melanin-related diseases.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|