1
|
Barseem A, Elshahawy M, Elagamy SH. Fluorimetric determination of Vonoprazan via quenching of nitrogen and sulfur co-doped carbon quantum dots: A rapid and sustainable analytical approach. LUMINESCENCE 2024; 39:e4834. [PMID: 39036968 DOI: 10.1002/bio.4834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
In this study, an environmentally sustainable fluorimetric method for determination of Vonoprazan fumarate (VON) in dosage forms using nanoprobes consisting of nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs). The N, S-CQDs were prepared through a microwave-assisted method in 30 s. The resulting N, S-CQDs were characterized using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). They exhibit fluorescence emission at 460 nm after excitation at 385 nm with a high quantum yield (60%). The analytical approach for VON determination relies on the quenching effect exerted by VON on the native fluorescence intensity of CQDs. The quenching mechanism was investigated using Stern-Volmer plots. The proposed method demonstrates linearity across a concentration range 10-80 μM (4.6-36.8 μg/mL) with corresponding limits of detection and quantitation calculated as 2.17 μM (0.99 μg/mL) and 6.58 μM (3.02 μg/mL), respectively. The method has been effectively utilized for the determination of VON in the pharmaceutical samples. Statistical comparison with reported RP-HPLC has been performed to verify the accuracy and precision of the developed method. The environmental sustainability of the developed method has been thoroughly examined through various greenness metrics.
Collapse
Affiliation(s)
- Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menofia University, Menofia, Egypt
| | - Mahmoud Elshahawy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Samar H Elagamy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Belal F, Mabrouk M, Hammad S, Ahmed H, Barseem A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 2024; 34:119-138. [PMID: 37222883 DOI: 10.1007/s10895-023-03276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
3
|
Ahmed Abdel Hamid M, Elagamy SH, Gamal A, Mansour FR. Microwave prepared nitrogen and sulfur co-doped carbon quantum dots for rapid determination of ascorbic acid through a turn off-on strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122440. [PMID: 36774849 DOI: 10.1016/j.saa.2023.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A simple and eco-friendly microwave method was applied for the preparation of highly fluorescent nitrogen and sulfur co-doped carbon quantum dots (NS-CQDs) and used for the determination of ascorbic acid (ASC) in pharmaceutical dosage forms. The prepared NS-CQDs had bright blue fluorescence at a maximum emission wavelength of 440 nm, after excitation with 350 nm, with a quantum yield of 62.5 %. The developed NS-CQDs were prepared from citric acid and l-cysteine in one minute. The native fluorescence of NS-CQDs was quenched by ferric ions due to the formation of non-fluorescent CQDs/ Fe3+ complex. The quenched fluorescence could be restored by the addition of ASC due to the reducing properties of ASC which converts Fe3+ to Fe2+. The method was found linear over the concentration range of 2.0-100 μg/mL, with a limit of detection was 0.6 μg/mL and a coefficient of determination of 0.9965. The proposed method was cross-validated and statistically compared with a reported HPLC method. The results indicated that the developed method was greener, according to the analytical eco-scale and the green analytical procedure index (GAPI). The prepared NS-CQDs were used for spectrofluorometric determination of ASC in pharmaceutical dosage forms, with percentage recoveries ranging between 98 and 102 %, and relative standard deviations less than 2 %. The method was easy, rapid, reliable, and sensitive and did not require expensive reagents or sophisticated equipment.
Collapse
Affiliation(s)
- Mohamed Ahmed Abdel Hamid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Samar H Elagamy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Aya Gamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| |
Collapse
|
4
|
Wang Q, Zhu B, Han Y, Yang X, Xu Y, Cheng Y, Liu T, Wu J, Li S, Ding L, Bai J, Niu Y. Metal ions mediated carbon dots nanoprobe for fluorescent turn-on sensing of N-acetyl-L-cysteine. LUMINESCENCE 2022; 37:1267-1274. [PMID: 35608368 DOI: 10.1002/bio.4292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022]
Abstract
Carbon dots (CDs) was facilely synthesized from aspartic acid through a pyrolysis method in this work. Based on their favorable fluorescence property, CDs was utilized to design a metal ions-mediated fluorescent probe for N-acetyl-L-cysteine (NAC) detection. The fluorescence intensity of CDs was firstly quenched by manganese ion (Mn2+ ) through static quenching effect and subsequently restored by NAC via the combination with Mn2+ owing to the coordination effect. Therefore, the fluorescent turn-on sensing of NAC was actuated based on the fluorescence quenching stimulated by Mn2+ and recovery induced by coordination. The fluorescence recovery efficiencies showed a proportional range to the concentration of NAC in the range of 0.04-5 mmol L-1 and the detection limit was 0.03 mmol L-1 . Further, this metal ions-mediated fluorescent nanoprobe was applied to human urine sample detection and the standard recovery rates were located in the range of 97.62-102.34 %. It was the first time that Mn2+ was used to construct fluorescent nanoprobe for NAC. Compared to other heavy metal ions, Mn2+ with good biosecurity prevented the risk of application, which made the nanoprobe green and bio-practical. The facile synthesis of CDs and novel metal ions-mediated sensing mode made it a promising method for pharmaceutical analysis.
Collapse
Affiliation(s)
- Qi Wang
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Bin Zhu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Yejiao Han
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Xin Yang
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Yanan Xu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Ying Cheng
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Taotao Liu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Jiana Wu
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Shengling Li
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Lifeng Ding
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| | - Jingjing Bai
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Yulan Niu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, China
| |
Collapse
|
5
|
Rapid microwave synthesis of N,S-doped carbon quantum dots as a novel turn off-on sensor for label-free determination of copper and etidronate disodium. Anal Chim Acta 2022; 1197:339491. [DOI: 10.1016/j.aca.2022.339491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/07/2023]
|