1
|
Chérif I, Gassoumi B, Ayachi H, Echabaane M, Caccamo MT, Magazù S, Said AH, Taoufik B, Ayachi S. A theoretical and electrochemical impedance spectroscopy study of the adsorption and sensing of selected metal ions by 4-morpholino-7-nitrobenzofuran. Heliyon 2024; 10:e26709. [PMID: 38439845 PMCID: PMC10909671 DOI: 10.1016/j.heliyon.2024.e26709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
The selectivity of a novel chemosensor, based on a modified nitrobenzofurazan referred to as NBD-Morph, has been investigated for the detection of heavy metal cations (Co2+, Pb2+, Mg2+, Ag+, Cu2+, Hg2+, Ni2+, and Zn2+). The ligand, 4-morpholino-7-nitrobenzofurazan (NBD-Morph), was characterized using spectroscopic techniques including FT-IR and 1H NMR. Vibrational frequencies obtained from FT-IR and proton NMR (1H) chemical shifts were accurately predicted employing the density functional theory (DFT) at the B3LYP level of theory. Furthermore, an examination of the structural, electronic, and quantum chemical properties was conducted and discussed. DFT calculations were employed to explore the complex formation ability of the NBD-Morph ligand with Co2+, Pb2+, Mg2+, Ag+, Cu2+, Hg2+, Ni2+, and Zn2+ metal cations. The comparison of adsorption energies for all possible conformations reveals that NBD-Morph exhibits sensitivity and selectivity towards metal ions, including Pb2+, Cu2+, Ag+, and Ni2+. However, an assessment of their reactivity using QTAIM topological parameters demonstrated the ligand's greater complexation ability toward Cu2+ or Ni2+ than those formed by Pb2+ or Ag+. Additionally, molecular electrostatic potential (MEP), Hirshfeld surfaces, and their associated 2D-fingerprint plots were applied to a detailed study of the inter-molecular interactions in NBD-Morph-X (X = Pb2+, Cu2+, Ag+, Ni2+) complexes. The electron localization function (ELF) and the localized-orbital locator (LOL) were generated to investigate the charge transfer and donor-acceptor interactions within the complexes. Electrochemical analysis further corroborates the theoretical findings, supporting the prediction of NBD-Morph's sensory ability towards Ni2+ metal cations. In conclusion, NBD-Morph stands out as a promising sensor for Ni2+.
Collapse
Affiliation(s)
- Imen Chérif
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, Avenue of the Environment 5019 Monastir, University of Monastir, Tunisia
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Bouzid Gassoumi
- Laboratoire Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Hajer Ayachi
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Mosaab Echabaane
- CRMN, Centre de Recherche en Microélectronique et Nanotechnologie de Sousse, Nanomisene, LR16CRMN01, 4054, Sousse, Tunisie
| | - Maria Teresa Caccamo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Ayoub Haj Said
- Laboratoire Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Boubaker Taoufik
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Sahbi Ayachi
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, Avenue of the Environment 5019 Monastir, University of Monastir, Tunisia
| |
Collapse
|
2
|
Zhang X, Zhang Y, Zhao L. Yb-TCPP metal-organic framework as fluorescence sensor for detecting tetracycline in milk. LUMINESCENCE 2024; 39:e4720. [PMID: 38523056 DOI: 10.1002/bio.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
Developing effective means for detecting contamination in milk during production, processing, and storage is both important and challenging. Tetracycline (TC), due to its use in treating animal infections, is among the most prevalent organic pollutants in milk, posing potential and significant threats to human health. However, efficient and in situ monitoring of TC remains lacking. Nevertheless, we have successfully developed a highly sensitive and selective fluorescence method for detecting TC in milk using a metal-organic framework material made from Yb-TCPP (ytterbium-tetra(4-carboxyphenyl)porphyrin). The calculated Stern-Volmer constant (KSV) was 12,310.88 M-1, and the detection limit was 2.44 × 10-6 M, surpassing previous reports. Crucially, Yb-TCPP fluoresces in the near-infrared region, promising its development into a specific fluorescence detection product for practical TC detection in milk, offering potential application value.
Collapse
Affiliation(s)
- Ximan Zhang
- School of Food Engineering, East University of Heilongjiang, Harbin, China
| | - Yun Zhang
- School of Food Engineering, East University of Heilongjiang, Harbin, China
| | - Lina Zhao
- School of Civil Engineering, Heilongjiang University, Harbin, China
| |
Collapse
|