1
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
2
|
Huang JJ, Wei T, Ye ZW, Zheng QW, Jiang BH, Han WF, Ye AQ, Han PY, Guo LQ, Lin JF. Microbial Cell Factory of Baccatin III Preparation in Escherichia coli by Increasing DBAT Thermostability and in vivo Acetyl-CoA Supply. Front Microbiol 2022; 12:803490. [PMID: 35095813 PMCID: PMC8790024 DOI: 10.3389/fmicb.2021.803490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Given the rapid development of genome mining in this decade, the substrate channel of paclitaxel might be identified in the near future. A robust microbial cell factory with gene dbat, encoding a key rate-limiting enzyme 10-deacetylbaccatin III-10-O-transferase (DBAT) in paclitaxel biosynthesis to synthesize the precursor baccatin III, will lay out a promising foundation for paclitaxel de novo synthesis. Here, we integrated gene dbat into the wild-type Escherichia coli BW25113 to construct strain BWD01. Yet, it was relatively unstable in baccatin III synthesis. Mutant gene dbat S189V with improved thermostability was screened out from a semi-rational mutation library of DBAT. When it was over-expressed in an engineered strain N05 with improved acetyl-CoA generation, combined with carbon source optimization of fermentation engineering, the production level of baccatin III was significantly increased. Using this combination, integrated strain N05S01 with mutant dbat S189V achieved a 10.50-fold increase in baccatin III production compared with original strain BWD01. Our findings suggest that the combination of protein engineering and metabolic engineering will become a promising strategy for paclitaxel production.
Collapse
Affiliation(s)
- Jia-jun Huang
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-wei Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-wang Zheng
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Bing-hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Wen-feng Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - An-qi Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Pei-yun Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-qiong Guo
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jun-fang Lin
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
3
|
Sullivan SA, Nawarathne IN, Walker KD. CoA recycling by a benzoate coenzyme A ligase in cascade reactions with aroyltransferases to biocatalyze paclitaxel analogs. Arch Biochem Biophys 2020; 683:108276. [PMID: 31978400 DOI: 10.1016/j.abb.2020.108276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
A Pseudomonas CoA ligase (BadA) biocatalyzed aroyl CoA thioesters used by a downstream N-benzoyltransferase (NDTNBT) in a cascade reaction made aroyl analogs of the anticancer drug paclitaxel. BadA kept the high-cost aroyl CoA substrates at saturation for the downstream NDTNBT by recycling CoA when it was added as the limiting reactant. A deacylated taxane substrate N-debenzoyl-2'-deoxypaclitaxel was converted to its benzoylated product at a higher yield, compared to the converted yield in assays in which the BadA ligase chemistry was omitted, and benzoyl CoA was added as a cosubstrate. The resulting benzoylated product 2'-deoxypaclitaxel was made at 196% over the theoretical yield of product that could be made from the CoA added at 50 μM, and the cosubstrates benzoic acid (100 μM), and N-debenzoyl-2'-deoxypaclitaxel (500 μM) added in excess. In addition, a 2-O-benzoyltransferase (mTBT) was incubated with BadA, aroyl acids, CoA, a 2-O-debenzoylated taxane substrate, and cofactors under the CoA-recycling conditions established for the NDTNBT/BadA cascade. The mTBT/BadA combination also made various 2-O-aroylated products that could potentially function as next-generation baccatin III compounds. These ligase/benzoyltransferase cascade reactions show the feasibility of recycling aroyl CoA thioesters in vitro to make bioactive acyl analogs of paclitaxel precursors.
Collapse
Affiliation(s)
- Sean A Sullivan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kevin D Walker
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Huang JJ, Wei T, Lin JF, Guo LQ, Han WF, Han PY, Ye AQ. High-effective biosynthesis of baccatin Ⅲ by using the alternative acetyl substrate, N-acetyl-d-glucosamine. J Appl Microbiol 2020; 129:345-355. [PMID: 32091657 DOI: 10.1111/jam.14620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022]
Abstract
AIMS Paclitaxel is a type of broad-spectrum anticancer drug in short supply. The price of acetyl-CoA (17 709 677·4 USD mol-1 ), which is the acetyl group donor for the enzymatic synthesis of the intermediate, baccatin Ⅲ, is still the bottleneck of the mass production of paclitaxel. This study reports a novel acetyl group donor, which could substantially reduce the cost of production. METHODS AND RESULTS In this study, a substrate spectrum with 14 kinds of representative acetyl-donor substitutes predicted by computer-aided methods was tested in a 10-deacetylbaccatin Ⅲ-10-O-acetyltransferase (DBAT) heterogeneous-expressed open-whole-cell catalytic system. The results of computer prediction and experimental analysis revealed the rule of the acetyl-donor compounds based on this substrate spectrum. N-acetyl-d-glucosamine (30·95 USD mol-1 , about 572 202-fold cheaper than acetyl-CoA) is selected as a suitable substitute under the rule. The yield when using N-acetyl-d-glucosamine as acetyl donor in open-whole-cell catalytic system was 2·13-fold of that when using acetyl-CoA. In the in vivo system, the yield increased 24·17%, which may indicate its cooperation with acetyl-CoA. CONCLUSION The success of open-whole-cell synthesis and in vivo synthesis of baccatin Ⅲ by adding N-acetyl-d-glucosamine as acetyl substrate demonstrates that it is a useful substrate to improve the yield of baccatin Ⅲ. SIGNIFICANCE AND IMPACT OF THE STUDY All these findings provided a potential acetyl-donor substitute for acetyl-CoA, as well as a low cost and efficient method of preparing paclitaxel through baccatin Ⅲ semi-synthesis.
Collapse
Affiliation(s)
- J-J Huang
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - T Wei
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - J-F Lin
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - L-Q Guo
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - W-F Han
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - P-Y Han
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - A-Q Ye
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Srividya N, Lange I, Hartmann M, Li Q, Mirzaei M, Lange BM. Biochemical characterization of acyl activating enzymes for side chain moieties of Taxol and its analogs. J Biol Chem 2020; 295:4963-4973. [PMID: 32086380 DOI: 10.1074/jbc.ra120.012663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Taxol (paclitaxel) is a very widely used anticancer drug, but its commercial sources mainly consist of stripped bark or suspension cultures of members of the plant genus Taxus. Taxol accumulates as part of a complex mixture of chemical analogs, termed taxoids, which complicates its production in pure form, highlighting the need for metabolic engineering approaches for high-level Taxol production in cell cultures or microbial hosts. Here, we report on the characterization of acyl-activating enzymes (AAEs) that catalyze the formation of CoA esters of different organic acids relevant for the N-substitution of the 3-phenylisoserine side chain of taxoids. On the basis of similarities to AAE genes of known function from other organisms, we identified candidate genes in publicly available transcriptome data sets obtained with Taxus × media. We cloned 17 AAE genes, expressed them heterologously in Escherichia coli, purified the corresponding recombinant enzymes, and performed in vitro assays with 27 organic acids as potential substrates. We identified TmAAE1 and TmAAE5 as the most efficient enzymes for the activation of butyric acid (Taxol D side chain), TmAAE13 as the best candidate for generating a CoA ester of tiglic acid (Taxol B side chain), TmAAE3 and TmAAE13 as suitable for the activation of 4-methylbutyric acid (N-debenzoyl-N-(2-methylbutyryl)taxol side chain), TmAAE15 as a highly efficient candidate for hexanoic acid activation (Taxol C side chain), and TmAAE4 as suitable candidate for esterification of benzoic acid with CoA (Taxol side chain). This study lays important groundwork for metabolic engineering efforts aimed at improving Taxol production in cell cultures.
Collapse
Affiliation(s)
- Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Iris Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Michael Hartmann
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Qunrui Li
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Maryam Mirzaei
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Bernd Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
6
|
You LF, Huang JJ, Lin SL, Wei T, Zheng QW, Jiang BH, Lin JF, Guo LQ. In vitro enzymatic synthesis of baccatin III with novel and cheap acetyl donors by the recombinant taxoid 10β-O-acetyl transferase. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2018.1549235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lin-Feng You
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecule, Chongqing Technology and Business University, Chongqing, China
| | - Jia-Jun Huang
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Shu-Ling Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-Wang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Bing-Hua Jiang
- Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jun-Fang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-Qiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
7
|
You LF, Wei T, Zheng QW, Lin JF, Guo LQ, Jiang BH, Huang JJ. Activity Essential Residue Analysis of Taxoid 10β-O-Acetyl Transferase for Enzymatic Synthesis of Baccatin. Appl Biochem Biotechnol 2018; 186:949-959. [PMID: 29797298 DOI: 10.1007/s12010-018-2789-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Taxoid 10β-O-acetyl transferase (DBAT) is a key enzyme in the biosynthesis of the famous anticancer drug paclitaxel, which catalyses the formation of baccatin III from 10-deacetylbaccatin III (10-DAB). However, the activity essential residues of the enzyme are still unknown, and the acylation mechanism from its natural substrate 10-deacetylbaccatin III and acetyl CoA to baccatin III remains unclear. In this study, the homology modelling, molecular docking, site-directed mutagenesis, and kinetic parameter determination of the enzyme were carried out. The results showed that the enzyme mutant DBATH162A resulted in complete loss of enzymatic activity, suggesting that the residue histidine at 162 was essential to DBAT activity. Residues D166 and R363 which were located in the pocket of the enzyme by homology modelling and molecular docking were also important for DBAT activity through the site-directed mutations. Furthermore, four amino acid residues including S31 and D34 from motif SXXD, D372 and G376 from motif DFGWG also played important roles on acylation. This was the first report of the elucidation of the activity essential residues of DBAT, making it possible for the further structural-based re-design of the enzyme for efficient biotransformation of baccatin III and paclitaxel.
Collapse
Affiliation(s)
- Lin-Feng You
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, 483 Wu-Shan Road, Tian-He District, Guangzhou, 510640, Guangdong, China
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecule, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, 483 Wu-Shan Road, Tian-He District, Guangzhou, 510640, Guangdong, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, Guangdong, China
| | - Qian-Wang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, 483 Wu-Shan Road, Tian-He District, Guangzhou, 510640, Guangdong, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, Guangdong, China
| | - Jun-Fang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, 483 Wu-Shan Road, Tian-He District, Guangzhou, 510640, Guangdong, China.
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, Guangdong, China.
| | - Li-Qiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, 483 Wu-Shan Road, Tian-He District, Guangzhou, 510640, Guangdong, China.
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, Guangdong, China.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jia-Jun Huang
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, 483 Wu-Shan Road, Tian-He District, Guangzhou, 510640, Guangdong, China
| |
Collapse
|
8
|
Grishko VV, Nogovitsina YM, Ivshina IB. Bacterial transformation of terpenoids. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n04abeh004396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Jungbauer A, Lee SY. Editorial: Breaking down the walls to achieve interdisciplinary science and engineering. Biotechnol J 2012; 7:4-5. [DOI: 10.1002/biot.201100484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Nevarez DM, Mengistu YA, Nawarathne IN, Walker KD. An N-aroyltransferase of the BAHD superfamily has broad aroyl CoA specificity in vitro with analogues of N-dearoylpaclitaxel. J Am Chem Soc 2009; 131:5994-6002. [PMID: 19382815 DOI: 10.1021/ja900545m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The native N-debenzoyl-2'-deoxypaclitaxel:N-benzoyltransferase (NDTBT), from Taxus plants, transfers a benzoyl group from the corresponding CoA thioester to the amino group of the beta-phenylalanine side chain of N-debenzoyl-2'-deoxypaclitaxel, which is purportedly on the paclitaxel (Taxol) biosynthetic pathway. To elucidate the substrate specificity of NDTBT overexpressed in Escherichia coli, the purified enzyme was incubated with semisynthetically derived N-debenzoyltaxoid substrates and aroyl CoA donors (benzoyl; ortho-, meta-, and para-substituted benzoyls; various heterole carbonyls; alkanoyls; and butenoyl), which were obtained from commercial sources or synthesized via a mixed anhydride method. Several unnatural N-aroyl-N-debenzoyl-2'-deoxypaclitaxel analogues were biocatalytically assembled with catalytic efficiencies (V(max)/K(M)) ranging between 0.15 and 1.74 nmol.min(-1).mM(-1). In addition, several N-acyl-N-debenzoylpaclitaxel variants were biosynthesized when N-debenzoylpaclitaxel and N-de(tert-butoxycarbonyl)docetaxel (i.e., 10-deacetyl-N-debenzoylpaclitaxel) were used as substrates. The relative velocity (v(rel)) for NDTBT with the latter two N-debenzoyl taxane substrates ranged between approximately 1% and 200% for the array of aroyl CoAs compared to benzoyl CoA. Interestingly, NDTBT transferred hexanoyl, acetyl, and butyryl more rapidly than butenoyl or benzoyl from the CoA donor to taxanes with isoserinoyl side chains, whereas N-debenzoyl-2'-deoxypaclitaxel was more rapidly converted to its N-benzoyl derivative than to its N-alkanoyl or N-butenoyl congeners. Biocatalytic N-acyl transfer of novel acyl groups to the amino functional group of N-debenzoylpaclitaxel and its 2'-deoxy precursor reveal the surprisingly indiscriminate specificity of this transferase. This feature of NDTBT potentially provides a tool for alternative biocatalytic N-aroylation/alkanoylation to construct next generation taxanes or other novel bioactive diterpene compounds.
Collapse
Affiliation(s)
- Danielle M Nevarez
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
11
|
Ondari ME, Walker KD. The Taxol Pathway 10-O-Acetyltransferase Shows Regioselective Promiscuity with the Oxetane Hydroxyl of 4-Deacetyltaxanes. J Am Chem Soc 2008; 130:17187-94. [DOI: 10.1021/ja8067534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark E. Ondari
- Departments of Chemistry and Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Kevin D. Walker
- Departments of Chemistry and Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|