1
|
Ament-Velásquez SL, Furneaux B, Dheur S, Granger-Farbos A, Stelkens R, Johannesson H, Saupe SJ. Reconstructing NOD-like receptor alleles with high internal conservation in Podospora anserina using long-read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632504. [PMID: 39868110 PMCID: PMC11761791 DOI: 10.1101/2025.01.13.632504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
NOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The het-d and het-e NLRs in Podospora anserina are highly polymorphic incompatibility genes (het genes) whose products recognize different alleles of the het-c gene via a sensor domain composed of WD40 repeats. These repeats display unusually high sequence identity maintained by concerted evolution. However, some sites within individual repeats are hypervariable and under diversifying selection. Despite extensive genetic studies, inconsistencies in the reported WD40 domain sequence have hindered functional and evolutionary analyses. Here we demonstrate that the WD40 domain can be accurately reconstructed from long-read sequencing (Oxford Nanopore and PacBio) data, but not from Illumina-based assemblies. Functional alleles are usually formed by 11 highly conserved repeats, with different repeat combinations underlying the same phenotypic het-d and het-e incompatibility reactions. Protein structure models suggest that their WD40 domain folds into two 7-blade β-propellers composed of the highly conserved repeats, as well as three cryptic divergent repeats at the C-terminus. We additionally show that one particular het-e allele does not have an incompatibility reaction with common het-c alleles, despite being 11-repeats long. Our findings provide a robust foundation for future research into the molecular mechanisms and evolutionary dynamics of het NLRs, while also highlighting both the fragility and the flexibility of β-propellers as immune sensor domains.
Collapse
Affiliation(s)
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Sonia Dheur
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
| | - Sven J Saupe
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| |
Collapse
|
2
|
Tang J, Zhang L, Su J, Ye Q, Li Y, Liu D, Cui H, Zhang Y, Ye Z. Insights into Fungal Mitochondrial Genomes and Inheritance Based on Current Findings from Yeast-like Fungi. J Fungi (Basel) 2024; 10:441. [PMID: 39057326 PMCID: PMC11277600 DOI: 10.3390/jof10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.)
| |
Collapse
|
3
|
Nieuwenhuis M, Groeneveld J, Aanen DK. Horizontal transfer of tRNA genes to mitochondrial plasmids facilitates gene loss from fungal mitochondrial DNA. Curr Genet 2023; 69:55-65. [PMID: 36447017 PMCID: PMC9925561 DOI: 10.1007/s00294-022-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
Fungal and plant mitochondria are known to exchange DNA with retroviral plasmids. Transfer of plasmid DNA to the organellar genome is best known and occurs through wholesale insertion of the plasmid. Less well known is the transfer of organellar DNA to plasmids, in particular tRNA genes. Presently, it is unknown whether fungal plasmids can adopt mitochondrial functions such as tRNA production through horizontal gene transfer. In this paper, we studied the exchange of DNA between fungal linear plasmids and fungal mtDNA, mainly focusing on the basidiomycete family Lyophyllaceae. We report at least six independent transfers of complete tRNA genes to fungal plasmids. Furthermore, we discovered two independent cases of loss of a tRNA gene from a fungal mitochondrial genome following transfer of such a gene to a linear mitochondrial plasmid. We propose that loss of a tRNA gene from mtDNA following its transfer to a plasmid creates a mutualistic dependency of the host mtDNA on the plasmid. We also find that tRNA genes transferred to plasmids encode codons that occur at the lowest frequency in the host mitochondrial genomes, possibly due to a higher number of unused transcripts. We discuss the potential consequences of mtDNA transfer to plasmids for both the host mtDNA and the plasmid.
Collapse
Affiliation(s)
- Mathijs Nieuwenhuis
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Jeroen Groeneveld
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
4
|
Ament-Velásquez SL, Vogan AA, Granger-Farbos A, Bastiaans E, Martinossi-Allibert I, Saupe SJ, de Groot S, Lascoux M, Debets AJM, Clavé C, Johannesson H. Allorecognition genes drive reproductive isolation in Podospora anserina. Nat Ecol Evol 2022; 6:910-923. [PMID: 35551248 PMCID: PMC9262711 DOI: 10.1038/s41559-022-01734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus Podospora anserina, allorecognition loci controlling vegetative incompatibility (het genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci het-r (encoding a NOD-like receptor) and het-v (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Alexandra Granger-Farbos
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Suzette de Groot
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Corinne Clavé
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Vangalis V, Papaioannou IA, Markakis EA, Knop M, Typas MA. Hex1, the Major Component of Woronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Pathogenic Fungus Verticillium dahliae. J Fungi (Basel) 2020; 6:jof6040344. [PMID: 33297524 PMCID: PMC7762394 DOI: 10.3390/jof6040344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Woronin bodies are membrane-bound organelles of filamentous ascomycetes that mediate hyphal compartmentalization by plugging septal pores upon hyphal damage. Their major component is the peroxisomal protein Hex1, which has also been implicated in additional cellular processes in fungi. Here, we analyzed the Hex1 homolog of Verticillium dahliae, an important asexual plant pathogen, and we report its pleiotropic involvement in fungal growth, physiology, stress response, and pathogenicity. Alternative splicing of the Vdhex1 gene can lead to the production of two Hex1 isoforms, which are structurally similar to their Neurospora crassa homolog. We show that VdHex1 is targeted to the septum, consistently with its demonstrated function in sealing hyphal compartments to prevent excessive cytoplasmic bleeding upon injury. Furthermore, our investigation provides direct evidence for significant contributions of Hex1 in growth and morphogenesis, as well as in asexual reproduction capacity. We discovered that Hex1 is required both for normal responses to osmotic stress and factors that affect the cell wall and plasma-membrane integrity, and for normal resistance to oxidative stress and reactive oxygen species (ROS) homeostasis. The Vdhex1 mutant exhibited diminished ability to colonize and cause disease on eggplant. Overall, we show that Hex1 has fundamentally important multifaceted roles in the biology of V. dahliae.
Collapse
Affiliation(s)
- Vasileios Vangalis
- Department of Genetics & Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Ioannis A. Papaioannou
- Center for Molecular Biology, Heidelberg University (ZMBH), 69120 Heidelberg, Germany; (I.A.P.); (M.K.)
| | - Emmanouil A. Markakis
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, N.A.G.R.E.F., Hellenic Agricultural Organization—DEMETER, 71307 Heraklion, Crete, Greece;
| | - Michael Knop
- Center for Molecular Biology, Heidelberg University (ZMBH), 69120 Heidelberg, Germany; (I.A.P.); (M.K.)
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Milton A. Typas
- Department of Genetics & Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- Correspondence:
| |
Collapse
|
6
|
Vogan AA, Ament-Velásquez SL, Granger-Farbos A, Svedberg J, Bastiaans E, Debets AJ, Coustou V, Yvanne H, Clavé C, Saupe SJ, Johannesson H. Combinations of Spok genes create multiple meiotic drivers in Podospora. eLife 2019; 8:46454. [PMID: 31347500 PMCID: PMC6660238 DOI: 10.7554/elife.46454] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/09/2019] [Indexed: 11/13/2022] Open
Abstract
Meiotic drive is the preferential transmission of a particular allele during sexual reproduction. The phenomenon is observed as spore killing in multiple fungi. In natural populations of Podospora anserina, seven spore killer types (Psks) have been identified through classical genetic analyses. Here we show that the Spok gene family underlies the Psks. The combination of Spok genes at different chromosomal locations defines the spore killer types and creates a killing hierarchy within a population. We identify two novel Spok homologs located within a large (74–167 kbp) region (the Spok block) that resides in different chromosomal locations in different strains. We confirm that the SPOK protein performs both killing and resistance functions and show that these activities are dependent on distinct domains, a predicted nuclease and kinase domain. Genomic and phylogenetic analyses across ascomycetes suggest that the Spok genes disperse through cross-species transfer, and evolve by duplication and diversification within lineages. In many organisms, most cells carry two versions of a given gene, one coming from the mother and the other from the father. An exception is sexual cells such as eggs, sperm, pollen or spores, which should only contain one variant of a gene. During their formation, these cells usually have an equal chance of inheriting one of the two gene versions. However, a certain class of gene variants called meiotic drivers can cheat this process and end up in more than half of the sexual cells; often, the cells that contain the drivers can kill sibling cells that do not carry these variants. This results in the selfish genetic elements spreading through populations at a higher rate, sometimes with severe consequences such as shifting the ratio of males to females. Meiotic drivers have been discovered in a wide range of organisms, from corn to mice to fruit flies and bread mold. They also exist in the fungus Podospora anserina, where they are called ‘spore killers’. Fungi are often used to study complex genetic processes, yet the identity and mode of action of spore killers in P. anserina were still unknown. Vogan, Ament-Velásquez et al. used a combination of genetic methods to identify three genes from the Spok family which are responsible for certain spores being able to kill their siblings. Two of these were previously unknown, and they could be found in different locations throughout the genome as part of a larger genetic region. Depending on the combination of Spok genes it carries, a spore can kill or be protected against other spores that contain different permutations of the genes. Copies of these genes were also shown to be present in other fungi, including species that are a threat to crops. Scientists have already started to create synthetic meiotic drivers to manipulate how certain traits are inherited within a population. This could be useful to control or eradicate pests and insects that transmit dangerous diseases. The results by Vogan, Ament-Velásquez et al. shine a light on the complex ways that natural meiotic drivers work, including how they can be shared between species; this knowledge could inform how to safely deploy synthetic drivers in the wild.
Collapse
Affiliation(s)
- Aaron A Vogan
- Organismal biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vegetative incompatibility in fungi: From recognition to cell death, whatever does the trick. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Tallei TE. Putative DNA-dependent RNA polymerase in Mitochondrial Plasmid of Paramecium caudatum Stock GT704. HAYATI JOURNAL OF BIOSCIENCES 2015. [DOI: 10.1016/j.hjb.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Daskalov A, Habenstein B, Martinez D, Debets AJM, Sabaté R, Loquet A, Saupe SJ. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLoS Biol 2015; 13:e1002059. [PMID: 25671553 PMCID: PMC4344463 DOI: 10.1371/journal.pbio.1002059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/29/2014] [Indexed: 01/09/2023] Open
Abstract
In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. The fungus Podospora anserina uses a prion amyloid fold as a signal transduction device between a Nod-like receptor and a downstream cell death execution protein. Although amyloids are best known as protein aggregates that are responsible for fatal neurodegenerative diseases, amyloid structures can also fulfill functional roles in cells. In particular, the controlled formation of amyloid structures appears to be involved in different signaling processes in the context of programmed cell death and host defense. The [Het-s] prion of the filamentous fungus Podospora anserina is a model system in which the 3-D structure of the prion form has been solved. The [Het-s] prion works as an activation switch for a second protein termed HET-S. HET-S is a pore-forming protein that is activated when the [Het-s] prion causes its C-terminal domain to adopt an amyloid-like fold. The protein encoded by the gene adjacent to het-S is a Nod-like receptor (NLR) called NWD2. NLRs are immune receptors that control host defense and cell death processes in plants, animals, and fungi. We show that NWD2 can template the formation of the [Het-s] prion fold in a ligand-controlled manner. NWD2 has an N-terminal motif homologous to the HET-S/s prion-forming region; we find that this region is both necessary and sufficient for its prion-inducing activity, and our functional and structural approaches reveal that the N-terminal region of NWD2 adopts a fold closely related to that of the HET-S/s prion. This study illustrates how the controlled formation of a prion amyloid fold can be used in a signaling process whereby a Nod-like receptor protein activates a downstream cell death execution domain.
Collapse
Affiliation(s)
- Asen Daskalov
- Non-self recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS—Université de Bordeaux, Bordeaux, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Alfons J. M. Debets
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Raimon Sabaté
- Institut de Nanociència i nanotecnologia, Departament Fisicoquímica, Universitat de Barcelona, Joan XXIII s/n, Barcelona, Spain
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Sven J. Saupe
- Non-self recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS—Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
10
|
van Diepeningen AD, Engelmoer DJP, Sellem CH, Huberts DHEW, Slakhorst SM, Sainsard-Chanet A, Zwaan BJ, Hoekstra RF, Debets AJM. Does autophagy mediate age-dependent effect of dietary restriction responses in the filamentous fungus Podospora anserina? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130447. [PMID: 24864315 DOI: 10.1098/rstb.2013.0447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a well-conserved catabolic process, involving the degradation of a cell's own components through the lysosomal/vacuolar machinery. Autophagy is typically induced by nutrient starvation and has a role in nutrient recycling, cellular differentiation, degradation and programmed cell death. Another common response in eukaryotes is the extension of lifespan through dietary restriction (DR). We studied a link between DR and autophagy in the filamentous fungus Podospora anserina, a multicellular model organism for ageing studies and mitochondrial deterioration. While both carbon and nitrogen restriction extends lifespan in P. anserina, the size of the effect varied with the amount and type of restricted nutrient. Natural genetic variation for the DR response exists. Whereas a switch to carbon restriction up to halfway through the lifetime resulted in extreme lifespan extension for wild-type P. anserina, all autophagy-deficient strains had a shorter time window in which ageing could be delayed by DR. Under nitrogen limitation, only PaAtg1 and PaAtg8 mediate the effect of lifespan extension; the other autophagy-deficient mutants PaPspA and PaUth1 had a similar response as wild-type. Our results thus show that the ageing process impinges on the DR response and that this at least in part involves the genetic regulation of autophagy.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Daniël J P Engelmoer
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Carole H Sellem
- Centre de Génétique Moléculaire, CNRS, UPR2167, 91198 Gif-sur-Yvette, France
| | - Daphne H E W Huberts
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - S Marijke Slakhorst
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Annie Sainsard-Chanet
- Centre de Génétique Moléculaire, CNRS, UPR2167, 91198 Gif-sur-Yvette, France Université Paris-Sud, 91405 Orsay, France
| | - Bas J Zwaan
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Rolf F Hoekstra
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Plohnke N, Hamann A, Poetsch A, Osiewacz HD, Rögner M, Rexroth S. Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms. Exp Gerontol 2014; 56:13-25. [PMID: 24556281 DOI: 10.1016/j.exger.2014.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/04/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
The mitochondrial free radical theory of aging (MFRTA) states that reactive oxygen species (ROS) generated at the respiratory electron transport chain are active in causing age-related damage of biomolecules like lipids, nucleic acids and proteins. Accumulation of this kind of damage results in functional impairments, aging and death of biological systems. Here we report data of an analysis to monitor the age-related quantitative protein composition of the mitochondria of the fungal aging model Podospora anserina. The impact of senescence on mitochondrial protein composition was analyzed by LC-MS. In an untargeted proteomic approach, we identified 795 proteins in samples from juvenile and senescent wild-type cultures and obtained quantitative information for 226 of these proteins by spectral counting. Despite the broad coverage of the proteome, no substantial changes in known age-related pathways could be observed. For a more detailed analysis, a targeted proteome analysis was applied focusing on 15 proteins from respiratory, ROS-scavenging and quality control pathways. Analyzing six distinct age-stages from juvenile to senescent P. anserina cultures revealed low, but statistically significant changes for the mitochondrial respiratory complexes. A P. anserina PaSod3 over-expression mutant with a phenotype of mitochondrial ROS over-production was used for biological evaluation of changes observed during aging. LC-MS analysis of the mutant revealed severe changes to the mitochondrial proteome--substantially larger than observed during senescence. Interestingly the amount of ATP synthase subunit g, involved in cristae formation is significantly decreased in the mutant implicating ROS-induced impairments in ATP synthase dimer and cristae formation. The difference between protein-profiles of aging wild type and ROS stressed mutant suggests that oxidative stress within the mitochondria is not the dominating mechanism for the aging process in P. anserina. Collectively, while our data do not exclude an effect of ROS on specific proteins and in signaling and control of pathways which are governing aging of P. anserina, it contradicts increasing ROS as a cause of a gross general and non-selective accumulation of damaged proteins during senescence. Instead, ROS may be effective by controlling specific regulators of mitochondrial function.
Collapse
Affiliation(s)
- Nicole Plohnke
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, D-60438 Frankfurt, Germany.
| | - Ansgar Poetsch
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, D-60438 Frankfurt, Germany.
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Sascha Rexroth
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
12
|
Bastiaans E, Debets AJM, Aanen DK, van Diepeningen AD, Saupe SJ, Paoletti M. Natural variation of heterokaryon incompatibility gene het-c in Podospora anserina reveals diversifying selection. Mol Biol Evol 2014; 31:962-74. [PMID: 24448643 PMCID: PMC3969566 DOI: 10.1093/molbev/msu047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina. The het-c locus determines an allogenic incompatibility reaction together with two unlinked loci termed het-d and het-e. Each het-c allele is incompatible with a specific subset of the het-d and het-e alleles. We analyzed variability at the het-c locus in a population of 110 individuals, and in additional isolates from various localities. We identified a total of 11 het-c alleles, which define 7 distinct incompatibility specificity classes in combination with the known het-d and het-e alleles. We found that the het-c allorecognition gene of P. anserina is under diversifying selection. We find a highly unequal allele distribution of het-c in the population, which contrasts with the more balanced distribution of functional groups of het-c based on their allorecognition function. One explanation for the observed het-c diversity in the population is its function in allorecognition. However, alleles that are most efficient in allorecognition are rare. An alternative and not exclusive explanation for the observed diversity is that het-c is involved in pathogen recognition. In Arabidopsis thaliana, a homolog of het-c is a pathogen effector target, supporting this hypothesis. We hypothesize that the het-c diversity in P. anserina results from both its functions in pathogen-defense, and allorecognition.
Collapse
Affiliation(s)
- Eric Bastiaans
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Sodiomyces alkalinus, a new holomorphic alkaliphilic ascomycete within the Plectosphaerellaceae. Persoonia - Molecular Phylogeny and Evolution of Fungi 2013; 31:147-58. [PMID: 24761040 PMCID: PMC3904047 DOI: 10.3767/003158513x673080] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/24/2013] [Indexed: 11/25/2022]
Abstract
In this study we reassess the taxonomic reference of the previously described holomorphic alkaliphilic fungus Heleococcum alkalinum isolated from soda soils in Russia, Mongolia and Tanzania. We show that it is not an actual member of the genus Heleococcum (order Hypocreales) as stated before and should, therefore, be excluded from it and renamed. Multi-locus gene phylogeny analyses (based on nuclear ITS, 5.8S rDNA, 28S rDNA, 18S rDNA, RPB2 and TEF1-alpha) have displayed this fungus as a new taxon at the genus level within the family Plectosphaerellaceae, Hypocreomycetidae, Ascomycota. The reference species of actual Heleococcum members showed clear divergence from the strongly supported Heleococcum alkalinum position within the Plectosphaerellaceae, sister to the family Glomerellaceae. Eighteen strains isolated from soda lakes around the world show remarkable genetic similarity promoting speculations on their possible evolution in harsh alkaline environments. We established the pH growth optimum of this alkaliphilic fungus at c. pH 10 and tested growth on 30 carbon sources at pH 7 and 10. The new genus and species, Sodiomyces alkalinus gen. nov. comb. nov., is the second holomorphic fungus known within the family, the first one being Plectosphaerella – some members of this genus are known to be alkalitolerant. We propose the Plectosphaerellaceae family to be the source of alkaliphilic filamentous fungi as also the species known as Acremonium alcalophilum belongs to this group.
Collapse
|
14
|
In vivo conformation and replication intermediates of circular mitochondrial plasmids in Neurospora and Cryphonectria parasitica. Fungal Biol 2012; 116:919-31. [PMID: 22862920 DOI: 10.1016/j.funbio.2012.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 12/22/2022]
Abstract
The in vivo conformation and replication intermediates of fungal circular mitochondrial plasmids and plasmid-like mitochondrial element (plMEs) were analyzed by two-dimensional gel electrophoresis and electron microscopy. Plasmids with circular restriction maps exist predominantly as circular molecules and were found to replicate by rolling circle mechanisms. However, the reverse transcriptase-encoding Mauriceville plasmid of Neurospora crassa was observed to replicate by two possible mechanisms: one that is consistent with a reverse transcriptase-mediated process and a second one might involve rolling circle DNA replication. Like the mtDNA-derived plasmid-like elements of N. crassa (Hausner et al. 2006a, b), a plasmid-like element of Cryphonectria parasitica (plME-C9), which consists predominantly of a 1.4 kb nucleotide sequence different from mitochondrial DNA, also was found to replicate by a rolling circle mechanism. Although the techniques used in this study were not suited for the establishment of the in vivo conformation and mode of replication of the mtDNAs of Neurospora or Cryphonectria, we surmise that the rolling circle mechanism might be the predominant mode of DNA replication in fungal mitochondria.
Collapse
|
15
|
Abstract
Prions are infectious proteins that cause fatal diseases in mammals. Prions have also been found in fungi, but studies on their role in nature are scarce. The proposed biological function of fungal prions is debated and varies from detrimental to benign or even beneficial. [Het-s] is a prion of the fungus Podospora anserina. The het-s locus exists as two antagonistic alleles that constitute an allorecognition system: the het-s allele encoding the protein variant capable of prion formation and the het-S allele encoding a protein variant that cannot form a prion. We document here that het-s alleles, capable of prion formation, are nearly twice as frequent as het-S alleles in a natural population of 112 individuals. Then, we report a 92% prevalence of [Het-s] prion infection among the het-s isolates and find evidence of the role of the [Het-s]/het-S allorecognition system on the incidence of infection by a deleterious senescence plasmid. We explain the het-s/het-S allele ratios by the existence of two selective forces operating at different levels. We propose that during the somatic stage, the role of [Het-s]/HET-S in allorecognition leads to frequency-dependent selection for which an equilibrated frequency would be optimal. However, in the sexual cycle, the [Het-s] prion causes meiotic drive favoring the het-s allele. Our findings indicate that [Het-s] is a selected and, therefore, widespread prion whose activity as selfish genetic element is counteracted by balancing selection for allorecognition polymorphism.
Collapse
|
16
|
Geydan TD, Debets AJM, Verkley GJM, van Diepeningen AD. Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Mol Ecol 2012; 21:2816-28. [PMID: 22486972 DOI: 10.1111/j.1365-294x.2012.05569.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Evolutionary theory predicts that senescence--a decline in reproduction and survival with increasing age--can evolve as a trade-off between investment in reproduction on one side and in somatic maintenance and repair on the other. The ecology of a species is crucial because it provides the external causes of death that determine the statistical limit to a species' lifespan. Filamentous fungi are generally believed to be nonsenescent, and there are indeed spectacular examples of very old fungal individuals in nature. However, some fungi utilize ephemeral resources, and therefore, senescence is expected to have evolved, like in the coprophilic Podospora anserina, the only well-studied filamentous fungus with intrinsic senescence. Here, we hypothesize that rapid senescence is more common in fungi than generally believed and that the phylogenetic distribution of senescence correlates with ecology. We collected lifespan data for a set of Sordariomycetes and constructed phylogenies based on several nuclear sequences. Several of the strains were from the CBS culture collection, originally isolated from various substrates, some of which ephemeral. In addition, we isolated new strains from short-lived substrates. Senescence was observed throughout the phylogeny. Correlation tests support the hypothesis that in the Sordariomycetes, senescence is a trait that has arisen in response to ephemeral substrates, and that it has evolved repeatedly and independently along the phylogeny.
Collapse
Affiliation(s)
- Thomas D Geydan
- Department of Genetics, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | | | | | | |
Collapse
|
17
|
van Diepeningen AD, Goedbloed DJ, Slakhorst SM, Koopmanschap AB, Maas MFPM, Hoekstra RF, Debets AJM. Mitochondrial recombination increases with age in Podospora anserina. Mech Ageing Dev 2010; 131:315-22. [PMID: 20226205 DOI: 10.1016/j.mad.2010.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 12/15/2022]
Abstract
With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer of organelles takes place, making it possible to study mitochondrial recombination when introduced mitochondria contain different markers. A survey of wild-type isolates from a local population of the filamentous fungus Podospora anserina for the presence of seven optional mitochondrial introns indicated that mitochondrial recombination does take place in nature. Moreover the recombination frequency appeared to be correlated with age: the more rapidly ageing fraction of the population had a significantly lower linkage disequilibrium indicating more recombination. Direct confrontation experiments with heterokaryon incompatible strains with different mitochondrial markers at different (relative) age confirmed that mitochondrial recombination increases with age. We propose that with increasing mitochondrial damage over time, mitochondrial recombination - even within a homoplasmic population of mitochondria - is a mechanism that may restore mitochondrial function.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Takano H, Onoue K, Kawano S. Mitochondrial fusion and inheritance of the mitochondrial genome. JOURNAL OF PLANT RESEARCH 2010; 123:131-138. [PMID: 20196232 DOI: 10.1007/s10265-009-0268-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion.
Collapse
Affiliation(s)
- Hiroyoshi Takano
- Bioelectrics Research Center, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan.
| | | | | |
Collapse
|
19
|
van Diepeningen AD, Slakhorst SM, Koopmanschap AB, Ikink GJ, Debets AJM, Hoekstra RF. Calorie restriction in the filamentous fungus Podospora anserina. Exp Gerontol 2010; 45:516-24. [PMID: 20064602 DOI: 10.1016/j.exger.2010.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 11/27/2022]
Abstract
Calorie restriction (CR) is a regimen of reduced food intake that, although the underlying mechanism is unknown, in many organisms leads to life span extension. Podospora anserina is one of the few known ageing filamentous fungi and the ageing process and concomitant degeneration of mitochondria have been well-studied. CR in P. anserina increases not only life span but also forestalls the ageing-related decline in fertility. Here we review what is known about CR in P. anserina and about possibly involved mechanisms like enhanced mitochondrial stability, reduced production of reactive oxygen species and changes in the OXPHOS machinery. Additionally, we present new microscopic data on mitochondrial dynamics under rich nutritional and CR conditions at different points in life. Lines that have grown under severe CR for more than 50x the normal life span, show no accumulation of age-related damage, though fecundity is reduced in some of these lines. Finally, we discuss the possible role of CR in P. anserina in nature and the effect of CR at different points in life.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
van Diepeningen AD, Maas MFPM, Huberts DHEW, Goedbloed DJ, Engelmoer DJP, Slakhorst SM, Koopmanschap AB, Krause F, Dencher NA, Sellem CH, Sainsard-Chanet A, Hoekstra RF, Debets AJM. Calorie restriction causes healthy life span extension in the filamentous fungus Podospora anserina. Mech Ageing Dev 2009; 131:60-8. [PMID: 20026344 DOI: 10.1016/j.mad.2009.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 11/13/2009] [Accepted: 12/14/2009] [Indexed: 12/17/2022]
Abstract
Although most fungi appear to be immortal, some show systemic senescence within a distinct time frame. Podospora anserina for example shows an irreversible growth arrest within weeks of culturing associated with a destabilization of the mitochondrial genome. Here, we show that calorie restriction (CR), a regimen of under-nutrition without malnutrition, increases not only life span but also forestalls the aging-related decline in fertility. Similar to respiratory chain deficiencies the life span extension is associated with lower levels of intracellular H(2)O(2) measurements and a stabilization of the mitochondrial genome. Unlike respiratory chain deficiencies, CR cultures have a wild-type-like OXPHOS machinery similar to that of well-fed cultures as shown by native electrophoresis of mitochondrial protein complexes. Together, these data indicate that life span extension via CR is fundamentally different from that via respiratory chain mutations: Whereas the latter can be seen as a pathology, the former promotes healthy life span extension and may be an adaptive response.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Arboretumlaan 4, 6703BD Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Autophagy has been monitored in the filamentous fungus Podospora anserina using electron, light, and fluorescence microscopy. In this organism autophagy can be induced either by starvation or rapamycin treatment or by het gene incompatibility. Incompatible HET products signal a cell death reaction referred to as cell death by incompatibility. In het-R het-V strain bearing the two incompatible het-R and het-V genes, cell death is induced by a simple shift in growth temperature, as incompatibility is thermosensitive. In this strain large autophagosomes are formed as revealed by electron microscopy or using the GFP-PaATG8 marker. This strain constitutes an alternative model to study autophagy. Analysis of the three autophagy mutants, DeltaPaATG1, DeltaPaATG8, and DeltapspA, reveals that autophagy is essential for aerial hyphae and female organ differentiation and involved in spore germination. During the incompatibility reaction, autophagy might protect cells from cell death as suggested by accelerated cell death observed in autophagy mutants.
Collapse
|
22
|
Chevanne D, Bastiaans E, Debets A, Saupe SJ, Clavé C, Paoletti M. Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family. Curr Genet 2009; 55:93-102. [PMID: 19137300 DOI: 10.1007/s00294-008-0227-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/18/2008] [Accepted: 12/18/2008] [Indexed: 01/08/2023]
Abstract
In fungi, vegetative incompatibility is a conspecific non-self recognition mechanism that restricts formation of viable heterokaryons when incompatible alleles of specific het loci interact. In Podospora anserina, three non-allelic incompatibility systems have been genetically defined involving interactions between het-c and het-d, het-c and het-e, het-r and het-v. het-d and het-e are paralogues belonging to the HNWD gene family that encode proteins of the STAND class. HET-D and HET-E proteins comprise an N-terminal HET effector domain, a central GTP binding site and a C-terminal WD repeat domain constituted of tandem repeats of highly conserved WD40 repeat units that define the specificity of alleles during incompatibility. The WD40 repeat units of the members of this HNWD family are undergoing concerted evolution. By combining genetic analysis and gain of function experiments, we demonstrate that an additional member of this family, HNWD2, corresponds to the het-r non-allelic incompatibility gene. As for het-d and het-e, allele specificity at the het-r locus is determined by the WD repeat domain. Natural isolates show allelic variation for het-r.
Collapse
Affiliation(s)
- Damien Chevanne
- Laboratoire de Génétique Moléculaire des Champignons, IBGC, UMR5095, Université Victor Segalen Bordeaux2 et CNRS, 1 rue Camille Saint-Saëns, 33077, Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|