1
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
2
|
Sakalli T, Surmeli NB. Functional characterization of a novel CYP119 variant to explore its biocatalytic potential. Biotechnol Appl Biochem 2021; 69:1741-1756. [PMID: 34431570 DOI: 10.1002/bab.2243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Biocatalysts are increasingly applied in the pharmaceutical and chemical industry. Cytochrome P450 enzymes (P450s) are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. P450s catalyze reactions using nicotinamide adenine dinucleotide phosphate (NAD(P)H) cofactor and electron transfer proteins. Alternatively, P450s can utilize hydrogen peroxide (H2 O2 ) as an oxidant, but this pathway is inefficient. P450s that show higher efficiency with peroxides are sought after in industrial applications. P450s from thermophilic organisms have more potential applications as they are stable toward high temperature, high and low pH, and organic solvents. CYP119 is an acidothermophilic P450 from Sulfolobus acidocaldarius. In our previous study, a novel T213R/T214I (double mutant [DM]) variant of CYP119 was obtained by screening a mutant library for higher peroxidation activity utilizing H2 O2 . Here, we characterized the substrate scope; stability toward peroxides; and temperature and organic solvent tolerance of DM CYP119 to identify its potential as an industrial biocatalyst. DM CYP119 displayed higher stability than wild-type (WT) CYP119 toward organic peroxides. It shows higher peroxidation activity for non-natural substrates and higher affinity for progesterone and other bioactive potential substrates compared to WT CYP119. DM CYP119 emerges as a new biocatalyst with a wide range of potential applications in the pharmaceutical and chemical industry.
Collapse
Affiliation(s)
- Tugce Sakalli
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, Urla, Izmir, Turkey
| | - Nur Basak Surmeli
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
3
|
Başlar MS, Sakallı T, Güralp G, Kestevur Doğru E, Haklı E, Surmeli NB. Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119. J Biol Inorg Chem 2020; 25:949-962. [PMID: 32924072 DOI: 10.1007/s00775-020-01816-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Biocatalysts are increasingly utilized in the synthesis of drugs and agrochemicals as an alternative to chemical catalysis. They are preferred in the synthesis of enantiopure products due to their high regioselectivity and enantioselectivity. Cytochrome P450 (P450) oxygenases are valuable biocatalysts, since they catalyze the oxidation of carbon-hydrogen bonds with high efficiency and selectivity. However, practical use of P450s is limited due to their need for expensive cofactors and electron transport partners. P450s can employ hydrogen peroxide (H2O2) as an oxygen and electron donor, but the reaction with H2O2 is inefficient. The development of P450s that can use H2O2 will expand their applications. Here, an assay that utilizes Amplex Red peroxidation, to rapidly screen H2O2-dependent activity of P450 mutants in cell lysate was developed. This assay was employed to identify mutants of CYP119, a thermophilic P450 from Sulfolobus acidocaldarius, with increased peroxidation activity. A mutant library of CYP119 containing substitutions in the heme active site was constructed via combinatorial active-site saturation test and screened for improved activity. Screening of 158 colonies led to five mutants with higher activity. Among improved variants, T213R/T214I was characterized. T213R/T214I exhibited fivefold higher kcat for Amplex Red peroxidation and twofold higher kcat for styrene epoxidation. T213R/T214I showed higher stability towards heme degradation by H2O2. While the Km for H2O2 and styrene were not altered by the mutation, a fourfold decrease in the affinity for another substrate, lauric acid, was observed. In conclusion, Amplex Red peroxidation screening of CYP119 mutants yielded enzymes with increased peroxide-dependent activity.
Collapse
Affiliation(s)
- M Semih Başlar
- Department of Bioengineering, İzmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Tuğçe Sakallı
- Program in Biotechnology and Bioengineering, İzmir Institute of Technology, Gülbahce, Urla, Izmir, Turkey
| | - Gülce Güralp
- Department of Bioengineering, İzmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Ekin Kestevur Doğru
- Department of Bioengineering, İzmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Emre Haklı
- Program in Biotechnology and Bioengineering, İzmir Institute of Technology, Gülbahce, Urla, Izmir, Turkey
| | - Nur Basak Surmeli
- Department of Bioengineering, İzmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey.
| |
Collapse
|
4
|
Ciaramella A, Catucci G, Di Nardo G, Sadeghi SJ, Gilardi G. Peroxide-driven catalysis of the heme domain of A. radioresistens cytochrome P450 116B5 for sustainable aromatic rings oxidation and drug metabolites production. N Biotechnol 2020; 54:71-79. [DOI: 10.1016/j.nbt.2019.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
|
5
|
Honda Y, Nanasawa K, Fujii H. Coexpression of 5-Aminolevulinic Acid Synthase Gene Facilitates Heterologous Production of Thermostable Cytochrome P450, CYP119, in Holo Form in Escherichia coli. Chembiochem 2018; 19:2156-2159. [PMID: 30101489 DOI: 10.1002/cbic.201800331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 11/07/2022]
Abstract
Cytochrome P450 enzymes are heme-containing monooxygenases that exhibit potential as biocatalysts for practical applications. The Escherichia coli expression system is frequently used for biocatalyst production; however, heterologous production of hemeproteins in their holo form is difficult due to insufficient heme synthesis by the host. In this study, 5-aminolevulinic acid synthase (ALAS) from Rhodobacter capsulatus is used to accelerate intracellular heme biosynthesis in E. coli; this demonstrates that coexpression of the ALAS gene (ALAS) improves the heterologous production of cytochrome P450, CYP119, from Sulfolobus acidocaldarius. Coexpression of ALAS increased the amount of heterologous CYP119 isolated and the ratio of its holo form. The ratio of holo-CYP119 resulting from the coexpression of ALAS in E. coli was 99 %, whereas that from cells expressing CYP119 exclusively was 66 %. Coexpression of ALAS is a promising alternative for the efficient heterologous production of hemeproteins by using E. coli.
Collapse
Affiliation(s)
- Yuki Honda
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Kii Nanasawa
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
6
|
Ma N, Chen Z, Chen J, Chen J, Wang C, Zhou H, Yao L, Shoji O, Watanabe Y, Cong Z. Dual-Functional Small Molecules for Generating an Efficient Cytochrome P450BM3 Peroxygenase. Angew Chem Int Ed Engl 2018; 57:7628-7633. [PMID: 29481719 DOI: 10.1002/anie.201801592] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/21/2022]
Abstract
We report a unique strategy for the development of a H2 O2 -dependent cytochrome P450BM3 system, which catalyzes the monooxygenation of non-native substrates with the assistance of dual-functional small molecules (DFSMs), such as N-(ω-imidazolyl fatty acyl)-l-amino acids. The acyl amino acid group of DFSM is responsible for bounding to enzyme as an anchoring group, while the imidazolyl group plays the role of general acid-base catalyst in the activation of H2 O2 . This system affords the best peroxygenase activity for the epoxidation of styrene, sulfoxidation of thioanisole, and hydroxylation of ethylbenzene among those P450-H2 O2 system previously reported. This work provides the first example of the activation of the normally H2 O2 -inert P450s through the introduction of an exogenous small molecule. This approach improves the potential use of P450s in organic synthesis as it avoids the expensive consumption of the reduced nicotinamide cofactor NAD(P)H and its dependent electron transport system. This introduces a promising approach for exploiting enzyme activity and function based on direct chemical intervention in the catalytic process.
Collapse
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingfei Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| |
Collapse
|
7
|
Ma N, Chen Z, Chen J, Chen J, Wang C, Zhou H, Yao L, Shoji O, Watanabe Y, Cong Z. Dual-Functional Small Molecules for Generating an Efficient Cytochrome P450BM3 Peroxygenase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhifeng Chen
- Hubei Key Laboratory of Natural Products Research and Development; College of Biological and Pharmaceutical Sciences; China Three Gorges University; Yichang Hubei 443002 China
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jingfei Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development; College of Biological and Pharmaceutical Sciences; China Three Gorges University; Yichang Hubei 443002 China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
| | - Osami Shoji
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8602 Japan
| | - Yoshihito Watanabe
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8602 Japan
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
| |
Collapse
|
8
|
Liang YR, Wu Q, Lin XF. Effect of Additives on the Selectivity and Reactivity of Enzymes. CHEM REC 2016; 17:90-121. [PMID: 27490244 DOI: 10.1002/tcr.201600016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/05/2023]
Abstract
Enzymes have been widely used as efficient, eco-friendly, and biodegradable catalysts in organic chemistry due to their mild reaction conditions and high selectivity and efficiency. In recent years, the catalytic promiscuity of many enzymes in unnatural reactions has been revealed and studied by chemists and biochemists, which has expanded the application potential of enzymes. To enhance the selectivity and activity of enzymes in their natural or promiscuous reactions, many methods have been recommended, such as protein engineering, process engineering, and media engineering. Among them, the additive approach is very attractive because of its simplicity to use and high efficiency. In this paper, we will review the recent developments about the applications of additives to improve the catalytic performances of enzymes in their natural and promiscuous reactions. These additives include water, organic bases, water mimics, cosolvents, crown ethers, salts, surfactants, and some particular molecular additives.
Collapse
Affiliation(s)
- Yi-Ru Liang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xian-Fu Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
9
|
Kawakami N, Hara Y, Miyamoto K. Modulating the catalytic activity and the substrate specificity of alcohol dehydrogenases using cyclic ethers. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00679a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic activity of Thermoanaerobacter brockii alcohol dehydrogenase (Tbadh) is increased by the addition of 1,3-dioxolane, although it is inhibited by the addition of tetrahydrofuran .
Collapse
Affiliation(s)
- Norifumi Kawakami
- Department of Biosciences and Informatics
- Keio University
- Yokohama
- Japan
| | - Yosuke Hara
- Department of Biosciences and Informatics
- Keio University
- Yokohama
- Japan
| | - Kenji Miyamoto
- Department of Biosciences and Informatics
- Keio University
- Yokohama
- Japan
| |
Collapse
|
10
|
Lee JH, Nam DH, Lee SH, Park JH, Park SJ, Lee SH, Park CB, Jeong KJ. New platform for cytochrome p450 reaction combining in situ immobilization on biopolymer. Bioconjug Chem 2014; 25:2101-4. [PMID: 25322062 DOI: 10.1021/bc500404j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We describe an efficienct chemical conversion platform with in situ immobilization of P450-BM3 on poly(3-hydroxybutyrate) granules. Through fusion with phasin, P450-BM3 is easily immobilized on poly(3-hydroxybutyrate) granules in Escherichia coli. In our work, the immobilized P450 exhibited higher stability and catalytic activity compared to free P450 against changes of pH, temperature, and concentrations of urea and ions. Through quick recovery of immobilized enzyme, the P450-P(3HB) complex successfully catalyzed an O-dealkylation reaction several times with maintained activity. Using the robust P450-P(3HB) complex, we performed a P450-catalyzed reaction on a preparative reactor scale (100 mL) and high-level production (12.3 μM) of 7-hydroxycoumarine from 7-ethoxycoumarin could be achieved.
Collapse
Affiliation(s)
- Jae Hyung Lee
- Department of Chemical and Biomolecular Engineering, and ‡Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology , 335 Science Road, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Somboon T, Ochiai J, Treesuwan W, Gleeson MP, Hannongbua S, Mori S. Mechanistic insights into the catalytic reaction of plant allene oxide synthase (pAOS) via QM and QM/MM calculations. J Mol Graph Model 2014; 52:20-9. [PMID: 24984079 DOI: 10.1016/j.jmgm.2014.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022]
Abstract
QM cluster and QM/MM protein models have been employed to understand aspects of the reaction mechanism of plant allene oxide synthase (pAOS). In this study we have investigated two reaction mechanisms for pAOS. The standard pAOS mechanism was contrasted with an alternative involving an additional active site molecule which has been shown to facilitate proton coupled electron transfer (PCET) in related systems. Firstly, we found that the results from QM/MM protein model are comparable with those from the QM cluster model, presumably due to the large active site used. Furthermore, the results from the QM cluster model show that the Fe(III) and Fe(IV) pathways for the standard mechanism have similar energetic and structural properties, indicating that the reaction mechanism may well proceed via both pathways. However, while the PCET process is facilitated by an additional active site bound water in other related families, in pAOS it is not, suggesting this type of process is not general to all closely related family members.
Collapse
Affiliation(s)
- Tuanjai Somboon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Jun Ochiai
- Faculty of Science, Ibaraki University, Ibaraki 310-8512, Japan
| | - Witcha Treesuwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Center of Nanotechnology KU, Kasetsart University, Chatuchak, Bangkok 10900 Thailand.
| | - Seiji Mori
- Faculty of Science, Ibaraki University, Ibaraki 310-8512, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan.
| |
Collapse
|
12
|
Zilly FE, Acevedo JP, Augustyniak W, Deege A, Häusig UW, Reetz MT. Tuning a P450 Enzyme for Methane Oxidation. Angew Chem Int Ed Engl 2011; 50:2720-4. [DOI: 10.1002/anie.201006587] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/01/2011] [Indexed: 01/24/2023]
Affiliation(s)
- Felipe E. Zilly
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Juan P. Acevedo
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Wojciech Augustyniak
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Alfred Deege
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Ulrich W. Häusig
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| |
Collapse
|
13
|
Zilly FE, Acevedo JP, Augustyniak W, Deege A, Häusig UW, Reetz MT. Tuning a P450 Enzyme for Methane Oxidation. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006587] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Felipe E. Zilly
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Juan P. Acevedo
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Wojciech Augustyniak
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Alfred Deege
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Ulrich W. Häusig
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany)
| |
Collapse
|