1
|
Kafle L, Mabuza TZ. An Analysis of Longan Honey from Taiwan and Thailand Using Flow Cytometry and Physicochemical Analysis. Foods 2024; 13:3772. [PMID: 39682844 DOI: 10.3390/foods13233772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in honey fraud in the global market has highlighted the importance of pollen analysis in determining or confirming the botanical and geographical origins of honey. Numerous studies are currently underway to develop efficient and rapid methods for the determination of the quality, botanical, and geographical origin of honey. Typically, the physicochemical analysis of honey is used to evaluate its quality and geographical source. In this study, flow cytometry, a technique extensively employed in immunology and hematology, was first applied to analyze and characterize pollen from longan honeys from Taiwan and Thailand. The flow cytometry was employed for forward scatter (FSC), side scatter (SSC), Y610-A, and NUV450 to analyze longan honey samples from Taiwan and Thailand. Taiwan's longan honeys were rich in pollens; however, based upon the FSC and SSC analyses, the pollens from Thai longan honeys were larger and more granular. The Y610/20 emission area was greatest in Thai pollens. The NUV450 measured in the near UV laser was also greater in Thai pollen. Additionally, honey samples were also analysed for physiochemical properties including moisture content, pH, ash content, viscosity, and hydroxymethylfurfural (HMF) for physiochemical properties of longan honey samples from both countries. The moisture content of honey from Taiwan varied between 20.90% and 23.40%, whereas honey from Thailand ranged from 19.50% to 23.50%. A total of 60% of Taiwan's longan honey was found to have a dark amber color, and only 20% of Thai longan honey exhibited a dark amber color. Furthermore, the pH range of honey from Taiwan was found to be between 4.00 and 4.16, and the pH of Thai honey ranged from 4.01 to 4.12. The ash content of honey samples from Taiwan ranged from 0.05% to 0.23%, and Thai honey had a range of 0.01% to 0.9%. All samples were negative for the Fiehe's test, indicating the absence of HMF. This analysis lays the groundwork for rapid identification the origins of the honey, applying flow cytometry in conjunction with physicochemical analysis to assess its quality.
Collapse
Affiliation(s)
- Lekhnath Kafle
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Tandzisile Zine Mabuza
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
2
|
Gierlicka I, Kasprzyk I, Wnuk M. Imaging Flow Cytometry as a Quick and Effective Identification Technique of Pollen Grains from Betulaceae, Oleaceae, Urticaceae and Asteraceae. Cells 2022; 11:cells11040598. [PMID: 35203248 PMCID: PMC8870286 DOI: 10.3390/cells11040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the continuous and intensive development of laboratory techniques, a light microscope is still the most common tool used in pollen grains differentiation. However, microscopy is time-consuming and needs well-educated and experienced researchers. Other currently used techniques can be categorised as images and non-images analysis, but each has certain limitations. We propose a new approach to differentiate pollen grains using the Imaging Flow Cytometry (IFC) technique. It allows for high-throughput fluorescence data recording, which, in contrast to the standard FC, also enables real-time control of the results thanks to the possibility of digital image recording of cells flowing through the measuring capillary. The developed method allows us to determine the characteristics of the pollen grains population based on the obtained fluorescence data, using various combinations of parameters available in the IDEAS software, which can be analysed on different fluorescence channels. On this basis, we distinguished pollen grains both between and within different genera belonging to the Betulaceae, Oleaceae, Urticaceae and Asteraceae families. Thereby, we prove that the proposed methodology is sufficient for accurate, fast, and cost-effective identification and potentially can be used in the routine analysis of allergenic pollen grains.
Collapse
Affiliation(s)
- Iwona Gierlicka
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (I.G.); (I.K.)
| | - Idalia Kasprzyk
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (I.G.); (I.K.)
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
- Correspondence: ; Tel.: +48-17-851-86-09
| |
Collapse
|
3
|
Kesoju SR, Kramer M, Brunet J, Greene SL, Jordan A, Martin RC. Gene flow in commercial alfalfa (Medicago sativa subsp. sativa L.) seed production fields: Distance is the primary but not the sole influence on adventitious presence. PLoS One 2021; 16:e0248746. [PMID: 33765070 PMCID: PMC7993763 DOI: 10.1371/journal.pone.0248746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
In insect-pollinated crops, gene flow is affected by numerous factors including crop characteristics, mating system, life history, pollinators, and planting management practices. Previous studies have concentrated on the impact of distance between genetically engineered (GE) and conventional fields on adventitious presence (AP) which represents the unwanted presence of a GE gene. Variables other than distance, however, may affect AP. In addition, some AP is often present in the parent seed lots used to establish conventional fields. To identify variables that influence the proportion of AP in conventional alfalfa fields, we performed variable selection regression analyses. Analyses based on a sample-level and a field-level analysis gave similar, though not identical results. For the sample-level model, distance from the GE field explained 66% of the variance in AP, confirming its importance in affecting AP. The area of GE fields within the pollinator foraging range explained an additional 30% of the variation in AP in the model. The density of alfalfa leafcutting bee domiciles influenced AP in both models. To minimize AP in conventional alfalfa seed fields, management practices should focus on optimizing isolation distances while also considering the size of the GE pollen pool within the pollinator foraging range, and the foraging behavior of pollinators.
Collapse
Affiliation(s)
- Sandya R. Kesoju
- Department of Agriculture, Columbia Basin College, Pasco, Washington, United States of America
| | - Matthew Kramer
- Statistics Group, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA, Agricultural Research Service, Madison, Wisconsin, United States of America
| | - Stephanie L. Greene
- Agricultural Genetic Resources Preservation Research Unit, USDA, Agricultural Research Service, Fort Collins, Colorado, United States of America
| | - Amelia Jordan
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington, United States of America
| | - Ruth C. Martin
- Forage Seed and Cereal Research, USDA, Agricultural Research Service, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Kron P, Loureiro J, Castro S, Čertner M. Flow cytometric analysis of pollen and spores: An overview of applications and methodology. Cytometry A 2021; 99:348-358. [PMID: 33625767 DOI: 10.1002/cyto.a.24330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Pollen grains are the male gametophytes in a seed-plant life cycle. Their small, particulate nature and crucial role in plant reproduction have made them an attractive object of study using flow cytometry (FCM), with a wide range of applications existing in the literature. While methodological considerations for many of these overlap with those for other tissue types (e.g., general considerations for the measurement of nuclear DNA content), the relative complexity of pollen compared to single cells presents some unique challenges. We consider these here in the context of both the identification and isolation of pollen and its subunits, and the types of research applications. While the discussion here mostly concerns pollen, the general principles described here can be extended to apply to spores in ferns, lycophytes, and bryophytes. In addition to recommendations provided in more general studies, some recurring and notable issues related specifically to pollen and spores are highlighted.
Collapse
Affiliation(s)
- Paul Kron
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Evolutionary Plant Biology, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|
5
|
Dunker S, Motivans E, Rakosy D, Boho D, Mäder P, Hornick T, Knight TM. Pollen analysis using multispectral imaging flow cytometry and deep learning. THE NEW PHYTOLOGIST 2021; 229:593-606. [PMID: 32803754 DOI: 10.1111/nph.16882] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 05/24/2023]
Abstract
Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best-performing classifier to yield a species-averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.
Collapse
Affiliation(s)
- Susanne Dunker
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, 04318, Germany
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
| | - Elena Motivans
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
- Helmholtz-Centre for Environmental Research - UFZ, Am Kirchtor 1, Halle (Saale), 06120, Germany
- Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany
| | - Demetra Rakosy
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, 04318, Germany
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
| | - David Boho
- Software Engineering for Safety-Critical Systems Group, Technische Universität Ilmenau, Ilmenau, 98693, Germany
| | - Patrick Mäder
- Software Engineering for Safety-Critical Systems Group, Technische Universität Ilmenau, Ilmenau, 98693, Germany
| | - Thomas Hornick
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, 04318, Germany
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
| | - Tiffany M Knight
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
- Helmholtz-Centre for Environmental Research - UFZ, Am Kirchtor 1, Halle (Saale), 06120, Germany
- Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany
| |
Collapse
|
6
|
Luria G, Rutley N, Lazar I, Harper JF, Miller G. Direct analysis of pollen fitness by flow cytometry: implications for pollen response to stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:942-952. [PMID: 30758085 DOI: 10.1111/tpj.14286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2 DCFDA-staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into 'low-ROS' and 'high-ROS' subpopulations. Pollen germination assays following fluorescence-activated cell sorting revealed that the high-ROS pollen germinated with a frequency that was 35-fold higher than the low-ROS pollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantify ROS dynamics within a large pollen population was shown by dose-dependent alterations in DCF-fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increased ROS levels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry-based approaches to investigate metabolic changes during stress responses in pollen.
Collapse
Affiliation(s)
- Gilad Luria
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Nicholas Rutley
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Itay Lazar
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Jeffery F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Gad Miller
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
7
|
Yan S, Zhu W, Zhang B, Zhang X, Zhu J, Shi J, Wu P, Wu F, Li X, Zhang Q, Liu X. Pollen-mediated gene flow from transgenic cotton is constrained by physical isolation measures. Sci Rep 2018; 8:2862. [PMID: 29434358 PMCID: PMC5809611 DOI: 10.1038/s41598-018-21312-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 02/02/2018] [Indexed: 11/09/2022] Open
Abstract
The public concern about pollen-mediated gene flow (PGF) from genetically modified (GM) crops to non-GM crops heats up in recent years over China. In the current study, we conducted greenhouse and field experiments to measure PGF with various physical isolation measures, including 90, 80, 60 and 40 holes/cm2 separation nets and Sorghum bicolor, Zea mays and Lycopersicon esculentum separation crops between GM cotton and non-GM line (Shiyuan321) by seed DNA test during 2013 to 2015, and pollen grain dyeing was also conducted to assess the pollen flow in greenhouse during 2013. Our results revealed that (1) PGF varied depending on the physical isolation measures. PGF was the lowest with 90 holes/cm2 separation net and S. bicolor separation crop, and the highest with 40 holes/cm2 separation net and no isolation measure. (2) Similar to PGF results, 90 holes/cm2 separation net and S. bicolor separation crop could minimize the pollen dispersal. (3) PGF declined exponentially with increasing distance between GM cotton and Shiyuan321. Because of the production mode of farm household (limited cultivated area) in China, our study is particularly important, which is not only benefit for constraining PGF, but also has potential application value in practical production and the scientific researches.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,National Agricultural Technology Extension and Service Center, Beijing, 100125, P.R. China
| | - Weilong Zhu
- Liuzhou Agriculture Technology Extend Service Center, Liuzhou, 545002, P.R. China
| | - Boyu Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
| | - Xinmi Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, 36830, USA
| | - Jialin Zhu
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, 100026, P.R. China
| | - Jizhe Shi
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Pengxiang Wu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Fengming Wu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Xiangrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.
| |
Collapse
|
8
|
Millwood R, Nageswara-Rao M, Ye R, Terry-Emert E, Johnson CR, Hanson M, Burris JN, Kwit C, Stewart CN. Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. BMC Biotechnol 2017; 17:40. [PMID: 28464851 PMCID: PMC5414321 DOI: 10.1186/s12896-017-0363-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Switchgrass is C4 perennial grass species that is being developed as a cellulosic bioenergy feedstock. It is wind-pollinated and considered to be an obligate outcrosser. Genetic engineering has been used to alter cell walls for more facile bioprocessing and biofuel yield. Gene flow from transgenic cultivars would likely be of regulatory concern. In this study we investigated pollen-mediated gene flow from transgenic to nontransgenic switchgrass in a 3-year field experiment performed in Oliver Springs, Tennessee, U.S.A. using a modified Nelder wheel design. The planted area (0.6 ha) contained sexually compatible pollen source and pollen receptor switchgrass plants. One hundred clonal switchgrass 'Alamo' plants transgenic for an orange-fluorescent protein (OFP) and hygromycin resistance were used as the pollen source; whole plants, including pollen, were orange-fluorescent. To assess pollen movement, pollen traps were placed at 10 m intervals from the pollen-source plot in the four cardinal directions extending to 20 m, 30 m, 30 m, and 100 m to the north, south, west, and east, respectively. To assess pollination rates, nontransgenic 'Alamo 2' switchgrass clones were planted in pairs adjacent to pollen traps. RESULTS In the eastward direction there was a 98% decrease in OFP pollen grains from 10 to 100 m from the pollen-source plot (Poisson regression, F1,8 = 288.38, P < 0.0001). At the end of the second and third year, 1,820 F1 seeds were collected from pollen recipient-plots of which 962 (52.9%) germinated and analyzed for their transgenic status. Transgenic progeny production detected in each pollen-recipient plot decreased with increased distance from the edge of the transgenic plot (Poisson regression, F1,15 = 12.98, P < 0.003). The frequency of transgenic progeny detected in the eastward plots (the direction of the prevailing wind) ranged from 79.2% at 10 m to 9.3% at 100 m. CONCLUSIONS In these experiments we found transgenic pollen movement and hybridization rates to be inversely associated with distance. However, these data suggest pollen-mediated gene flow is likely to occur up to, at least, 100 m. This study gives baseline data useful to determine isolation distances and other management practices should transgenic switchgrass be grown commercially in relevant environments.
Collapse
Affiliation(s)
- Reginald Millwood
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Madhugiri Nageswara-Rao
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA.,Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM, USA
| | - Rongjian Ye
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Ellie Terry-Emert
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Chelsea R Johnson
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Micaha Hanson
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Jason N Burris
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Charles Kwit
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, 274 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Kellenberger RT, Schlüter PM, Schiestl FP. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa. PLoS One 2016; 11:e0166646. [PMID: 27870873 PMCID: PMC5117703 DOI: 10.1371/journal.pone.0166646] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022] Open
Abstract
Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP) analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.
Collapse
Affiliation(s)
- Roman T. Kellenberger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Florian P. Schiestl
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Millwood RJ, Moon HS, Poovaiah CR, Muthukumar B, Rice JH, Abercrombie JM, Abercrombie LL, Green WD, Stewart CN. Engineered selective plant male sterility through pollen-specific expression of the EcoRI restriction endonuclease. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1281-90. [PMID: 26503160 PMCID: PMC11389094 DOI: 10.1111/pbi.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/05/2015] [Accepted: 09/22/2015] [Indexed: 05/08/2023]
Abstract
Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen-specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible-to-no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand-crossed to both male-sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000-40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male-sterile tobacco, and 900-2100 seeds per male-sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI-driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species.
Collapse
Affiliation(s)
| | - Hong S Moon
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | - John Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | | | | |
Collapse
|
11
|
Knauer AC, Schiestl FP. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol Lett 2014; 18:135-43. [PMID: 25491788 DOI: 10.1111/ele.12386] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/20/2014] [Indexed: 11/27/2022]
Abstract
Pollinators visit flowers for rewards and should therefore have a preference for floral signals that indicate reward status, so called 'honest signals'. We investigated honest signalling in Brassica rapa L. and its relevance for the attraction of a generalised pollinator, the bumble bee Bombus terrestris (L.). We found a positive association between reward amount (nectar sugar and pollen) and the floral scent compound phenylacetaldehyde. Bumble bees developed a preference for phenylacetaldehyde over other scent compounds after foraging on B. rapa. When foraging on artificial flowers scented with synthetic volatiles, bumble bees developed a preference for those specific compounds that honestly indicated reward status. These results show that the honesty of floral signals can play a key role in their attractiveness to pollinators. In plants, a genetic constraint, resource limitation in reward and signal production, and sanctions against cheaters may contribute to the evolution and maintenance of honest signalling.
Collapse
Affiliation(s)
- A C Knauer
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | | |
Collapse
|
12
|
Liu W, Mazarei M, Rudis MR, Fethe MH, Peng Y, Millwood RJ, Schoene G, Burris JN, Stewart CN. Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:43-52. [PMID: 23121613 DOI: 10.1111/pbi.12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post-symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early-warning sentinels potentially have tremendous utility as wide-area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis-acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time-course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields.
Collapse
Affiliation(s)
- Wusheng Liu
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Moon HS, Abercrombie LL, Eda S, Blanvillain R, Thomson JG, Ow DW, Stewart CN. Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. PLANT MOLECULAR BIOLOGY 2011; 75:621-31. [PMID: 21359553 DOI: 10.1007/s11103-011-9756-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/11/2011] [Indexed: 05/07/2023]
Abstract
Transgene escape, a major environmental and regulatory concern in transgenic crop cultivation, could be alleviated by removing transgenes from pollen, the most frequent vector for transgene flow. A transgene excision vector containing a codon optimized serine resolvase CinH recombinase (CinH) and its recognition sites RS2 were constructed and transformed into tobacco (Nicotiana tabacum cv. Xanthi). CinH recombinase recognized 119 bp of nucleic acid sequences, RS2, in pollen and excised the transgene flanked by the RS2 sites. In this system, the pollen-specific LAT52 promoter from tomato was employed to control the expression of CinH recombinase. Loss of expression of a green fluorescent protein (GFP) gene under the control of the LAT59 promoter from tomato was used as an indicator of transgene excision. Efficiency of transgene excision from pollen was determined by flow cytometry (FCM)-based pollen screening. While a transgenic event in the absence of CinH recombinase contained about 70% of GFP-synthesizing pollen, three single-copy transgene events contained less than 1% of GFP-synthesizing pollen based on 30,000 pollen grains analyzed per event. This suggests that CinH-RS2 recombination system could be effectively utilized for transgene biocontainment.
Collapse
Affiliation(s)
- Hong S Moon
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
|