1
|
Bao Z, Gao Y, Song Y, Ding N, Li W, Wu Q, Zhang X, Zheng Y, Li J, Hu X. Construction of an Escherichia coli chassis for efficient biosynthesis of human-like N-linked glycoproteins. Front Bioeng Biotechnol 2024; 12:1370685. [PMID: 38572355 PMCID: PMC10987854 DOI: 10.3389/fbioe.2024.1370685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The production of N-linked glycoproteins in genetically engineered Escherichia coli holds significant potential for reducing costs, streamlining bioprocesses, and enhancing customization. However, the construction of a stable and low-cost microbial cell factory for the efficient production of humanized N-glycosylated recombinant proteins remains a formidable challenge. In this study, we developed a glyco-engineered E. coli chassis to produce N-glycosylated proteins with the human-like glycan Gal-β-1,4-GlcNAc-β-1,3-Gal-β-1,3-GlcNAc-, containing the human glycoform Gal-β-1,4-GlcNAc-β-1,3-. Our initial efforts were to replace various loci in the genome of the E. coli XL1-Blue strain with oligosaccharyltransferase PglB and the glycosyltransferases LsgCDEF to construct the E. coli chassis. In addition, we systematically optimized the promoter regions in the genome to regulate transcription levels. Subsequently, utilizing a plasmid carrying the target protein, we have successfully obtained N-glycosylated proteins with 100% tetrasaccharide modification at a yield of approximately 320 mg/L. Furthermore, we constructed the metabolic pathway for sialylation using a plasmid containing a dual-expression cassette of the target protein and CMP-sialic acid synthesis in the tetrasaccharide chassis cell, resulting in a 40% efficiency of terminal α-2,3- sialylation and a production of 65 mg/L of homogeneously sialylated glycoproteins in flasks. Our findings pave the way for further exploration of producing different linkages (α-2,3/α-2,6/α-2,8) of sialylated human-like N-glycoproteins in the periplasm of the plug-and-play E. coli chassis, laying a strong foundation for industrial-scale production.
Collapse
Affiliation(s)
- Zixin Bao
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Yuting Gao
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Yitong Song
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Ning Ding
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Wei Li
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Qiong Wu
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Xiaomei Zhang
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Yang Zheng
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Junming Li
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| | - Xuejun Hu
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| |
Collapse
|
2
|
Shotgun scanning glycomutagenesis: A simple and efficient strategy for constructing and characterizing neoglycoproteins. Proc Natl Acad Sci U S A 2021; 118:2107440118. [PMID: 34551980 PMCID: PMC8488656 DOI: 10.1073/pnas.2107440118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Asparagine-linked (N-linked) protein glycosylation—the covalent attachment of complex sugars to the nitrogen atom in asparagine side chains—is the most widespread posttranslational modification to proteins and also the most complex. N-glycosylation affects a significant number of cellular proteins and can have profound effects on their most important attributes such as biological activity, chemical solubility, folding and stability, immunogenicity, and serum half-life. Accordingly, the strategic installation of glycans at naïve sites has become an attractive means for endowing proteins with advantageous biological and/or biophysical properties. Here, we describe a glycoprotein engineering strategy that enables systematic investigation of the structural and functional consequences of glycan installation at every position along a protein backbone and provides a new route to bespoke glycoproteins. As a common protein modification, asparagine-linked (N-linked) glycosylation has the capacity to greatly influence the biological and biophysical properties of proteins. However, the routine use of glycosylation as a strategy for engineering proteins with advantageous properties is limited by our inability to construct and screen large collections of glycoproteins for cataloguing the consequences of glycan installation. To address this challenge, we describe a combinatorial strategy termed shotgun scanning glycomutagenesis in which DNA libraries encoding all possible glycosylation site variants of a given protein are constructed and subsequently expressed in glycosylation-competent bacteria, thereby enabling rapid determination of glycosylatable sites in the protein. The resulting neoglycoproteins can be readily subjected to available high-throughput assays, making it possible to systematically investigate the structural and functional consequences of glycan conjugation along a protein backbone. The utility of this approach was demonstrated with three different acceptor proteins, namely bacterial immunity protein Im7, bovine pancreatic ribonuclease A, and human anti-HER2 single-chain Fv antibody, all of which were found to tolerate N-glycan attachment at a large number of positions and with relatively high efficiency. The stability and activity of many glycovariants was measurably altered by N-linked glycans in a manner that critically depended on the precise location of the modification. Structural models suggested that affinity was improved by creating novel interfacial contacts with a glycan at the periphery of a protein–protein interface. Importantly, we anticipate that our glycomutagenesis workflow should provide access to unexplored regions of glycoprotein structural space and to custom-made neoglycoproteins with desirable properties.
Collapse
|
3
|
Cain JA, Dale AL, Sumer-Bayraktar Z, Solis N, Cordwell SJ. Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol Omics 2021; 16:287-304. [PMID: 32347268 DOI: 10.1039/d0mo00032a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis in humans that is primarily associated with the consumption of inadequately prepared poultry products, since the organism is generally thought to be asymptomatic in avian species. Unlike many other microorganisms, C. jejuni is capable of performing extensive post-translational modification (PTM) of proteins by N- and O-linked glycosylation, both of which are required for optimal chicken colonization and human virulence. The biosynthesis and attachment of N-glycans to C. jejuni proteins is encoded by the pgl (protein glycosylation) locus, with the PglB oligosaccharyltransferase (OST) enabling en bloc transfer of a heptasaccharide N-glycan from a lipid carrier in the inner membrane to proteins exposed within the periplasm. Seventy-eight C. jejuni glycoproteins (represented by 134 sites of experimentally verified N-glycosylation) have now been identified, and include inner and outer membrane proteins, periplasmic proteins and lipoproteins, which are generally of poorly defined or unknown function. Despite our extensive knowledge of the targets of this apparently widespread process, we still do not fully understand the role N-glycosylation plays biologically, although several phenotypes, including wild-type stress resistance, biofilm formation, motility and chemotaxis have been related to a functional pgl system. Recent work has described enzymatic processes (nitrate reductase NapAB) and antibiotic efflux (CmeABC) as major targets requiring N-glycan attachment for optimal function, and experimental evidence also points to roles in cell binding via glycan-glycan interactions, protein complex formation and protein stability by conferring protection against host and bacterial proteolytic activity. Here we examine the biochemistry of the N-linked glycosylation system, define its currently known protein targets and discuss evidence for the structural and functional roles of this PTM in individual proteins and globally in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia. and Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia and Sydney Mass Spectrometry, The University of Sydney, 2006, Australia
| |
Collapse
|
4
|
Zainuddin HS, Bai Y, Mansell TJ. CRISPR-based curing and analysis of metabolic burden of cryptic plasmids in Escherichia coli Nissle 1917. Eng Life Sci 2019; 19:478-485. [PMID: 32625025 DOI: 10.1002/elsc.201900003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/28/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
E. coli Nissle 1917 (EcN) has long been used as an over-the-counter probiotic and has shown potential to be used as a live biotherapeutic. It contains two stably replicating cryptic plasmids, pMUT1, and pMUT2, the function of which is unclear but the presence of which may increase the metabolic burden on the cell, particularly in the context of added recombinant plasmids. In this work, we present a clustered regularly interspaced short palindromic repeats-Cas9-based method of curing cryptic plasmids, producing strains cured of one or both plasmids. We then assayed heterologous protein production from three different recombinant plasmids in wild-type and cured EcN derivatives and found that production of reporter proteins was not significantly different across strains. In addition, we replaced pMUT2 with an engineered version containing an inserted antibiotic resistance reporter gene and demonstrated that the engineered plasmid was stable over 90 generations without selection. These findings have broad implications for the curing of cryptic plasmids and for stable heterologous expression of proteins in this host. Specifically, curing of cryptic plasmids may not be necessary for optimal heterologous expression in this host.
Collapse
Affiliation(s)
- Halimatun S Zainuddin
- Department of Chemical and Biological Engineering Iowa State University Sweeney Hall Ames IA USA
| | - Yanfen Bai
- Department of Chemical and Biological Engineering Iowa State University Sweeney Hall Ames IA USA
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering Iowa State University Sweeney Hall Ames IA USA
| |
Collapse
|
5
|
Metabolic engineering of glycoprotein biosynthesis in bacteria. Emerg Top Life Sci 2018; 2:419-432. [PMID: 33525794 DOI: 10.1042/etls20180004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The demonstration more than a decade ago that glycoproteins could be produced in Escherichia coli cells equipped with the N-linked protein glycosylation machinery from Campylobacter jejuni opened the door to using simple bacteria for the expression and engineering of complex glycoproteins. Since that time, metabolic engineering has played an increasingly important role in developing and optimizing microbial cell glyco-factories for the production of diverse glycoproteins and other glycoconjugates. It is becoming clear that future progress in creating efficient glycoprotein expression platforms in bacteria will depend on the adoption of advanced strain engineering strategies such as rational design and assembly of orthogonal glycosylation pathways, genome-wide identification of metabolic engineering targets, and evolutionary engineering of pathway performance. Here, we highlight recent advances in the deployment of metabolic engineering tools and strategies to develop microbial cell glyco-factories for the production of high-value glycoprotein targets with applications in research and medicine.
Collapse
|
6
|
Schwarz F, Aebi M. Production of Glycoproteins with Asparagine-Linked N-Acetylglucosamine in Escherichia coli. Methods Mol Biol 2015; 1321:49-56. [PMID: 26082214 DOI: 10.1007/978-1-4939-2760-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Glycans linked to asparagine (N) residues of eukaryotic glycoproteins are typically heterogeneous. This diversity complicates the study of biological functions associated with particular glycan structures and impairs the application of glycoproteins in medicine. Several approaches have been developed to produce homogeneous glycoproteins. We describe a method to produce glycoproteins carrying N-linked N-acetylglucosamine (GlcNAc) through glyco-engineered E. coli cells and enzymatic treatment. N-linked GlcNAc can then be extended by existing methods to produce homogeneous glycoproteins.
Collapse
Affiliation(s)
- Flavio Schwarz
- Department of Medicine, Glycobiology Research and Training Center, La Jolla, CA, USA
| | | |
Collapse
|
7
|
Qin Y, Qu Y. Asn124 of Cel5A from Hypocrea jecorina not only provides the N-glycosylation site but is also essential in maintaining enzymatic activity. BMB Rep 2014; 47:256-61. [PMID: 24286316 PMCID: PMC4163860 DOI: 10.5483/bmbrep.2014.47.5.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 11/24/2022] Open
Abstract
To investigate the function of N-glycosylation of Cel5A (endoglucanase II) from Hypocrea jecorina, two N-glycosylation site deletion Cel5A mutants (rN124D and rN124H) were expressed in Saccharomyces cerevisiae. The weights of these recombinant mutants were 54 kDa, which were lower than that of rCel5A. This result was expected to be attributed to deglycosylation. The enzyme activity of rN124H was greatly reduced to 60.6% compared with rCel5A, whereas rN124D showed slightly lower activity (10%) than that of rCel5A. rN124D and rN124H showed different thermal stabilities compared with the glycosylated rCel5A, especially at lower pH value. Thermal stabilities were reduced and improved for rN124D and rN124H, respectively. Circular dichroism spectroscopy showed that the modification of secondary structure by mutation may be the reason for the change in enzymatic activity and thermal stability. [BMB Reports 2014; 47(5): 256-261]
Collapse
Affiliation(s)
- Yuqi Qin
- National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, 27, Shanda South Road, Jinan, Shandong 250100, China
| | - Yinbo Qu
- National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, 27, Shanda South Road, Jinan, Shandong 250100, China
| |
Collapse
|
8
|
Prather KLJ, Khademhosseini A. Editorial: Biomolecular engineering - latest advances and applications. Biotechnol J 2013. [DOI: 10.1002/biot.201300488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Tullman-Ercek D. An assay for the bacterial sweet spot. Biotechnol J 2013; 8:1377-8. [DOI: 10.1002/biot.201300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|