1
|
Wang L, Zhang W, Shen W, Li M, Fu Y, Li Z, Li J, Liu H, Su X, Zhang B, Zhao J. Integrated transcriptome and microRNA sequencing analyses reveal gene responses in poplar leaves infected by the novel pathogen bean common mosaic virus (BCMV). FRONTIERS IN PLANT SCIENCE 2023; 14:1163232. [PMID: 37396641 PMCID: PMC10308444 DOI: 10.3389/fpls.2023.1163232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Recently, a novel poplar mosaic disease caused by bean common mosaic virus (BCMV) was investigated in Populus alba var. pyramidalis in China. Symptom characteristics, physiological performance of the host, histopathology, genome sequences and vectors, and gene regulation at the transcriptional and posttranscriptional levels were analyzed and RT-qPCR (quantitative reverse transcription PCR) validation of expression was performed in our experiments. In this work, the mechanisms by which the BCMV pathogen impacts physiological performance and the molecular mechanisms of the poplar response to viral infection were reported. The results showed that BCMV infection decreased the chlorophyll content, inhibited the net photosynthesis rate (Pn) and stomatal conductance (Gs), and significantly changed chlorophyll fluorescence parameters in diseased leaves. Transcriptome analysis revealed that the expression of the majority of DEGs (differentially expressed genes) involved in the flavonoid biosynthesis pathway was promoted, but the expression of all or almost all DEGs associated with photosynthesis-antenna proteins and the photosynthesis pathway was inhibited in poplar leaves, suggesting that BCMV infection increased the accumulation of flavonoids but decreased photosynthesis in hosts. Gene set enrichment analysis (GSEA) illustrated that viral infection promoted the expression of genes involved in the defense response or plant-pathogen interaction. MicroRNA-seq analysis illustrated that 10 miRNA families were upregulated while 6 families were downregulated in diseased poplar leaves; moreover, miR156, the largest family with the most miRNA members and target genes, was only differentially upregulated in long-period disease (LD) poplar leaves. Integrated transcriptome and miRNA-seq analyses revealed 29 and 145 candidate miRNA-target gene pairs; however, only 17 and 76 pairs, accounting for 2.2% and 3.2% of all DEGs, were authentically negatively regulated in short-period disease (SD) and LD leaves, respectively. Interestingly, 4 miR156/SPL (squamosa promoter-binding-like protein) miRNA-target gene pairs were identified in LD leaves: the miR156 molecules were upregulated, but SPL genes were downregulated. In conclusion, BCMV infection significantly changed transcriptional and posttranscriptional gene expression in poplar leaves, inhibited photosynthesis, increased the accumulation of flavonoids, induced systematic mosaic symptoms, and decreased physiological performance in diseased poplar leaves. This study elucidated the fine-tuned regulation of poplar gene expression by BCMV; moreover, the results also suggested that miR156/SPL modules played important roles in the virus response and development of viral systematic symptoms in plant virus disease.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wanna Shen
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Min Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Yuchen Fu
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Zheng Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Jinxin Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Wu R, Wu G, Wang L, Wang X, Liu Z, Li M, Tan W, Qing L. Tobacco curly shoot virus Down-Regulated the Expression of nbe-miR167b-3p to Facilitate Its Infection in Nicotiana benthamiana. Front Microbiol 2021; 12:791561. [PMID: 34975814 PMCID: PMC8716884 DOI: 10.3389/fmicb.2021.791561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Tobacco curly shoot virus (TbCSV) belongs to the genus Begomovirus of the family Geminiviridae, and causes leaf curling and curly shoot symptoms in tobacco and tomato crops. MicroRNAs (miRNAs) are pivotal modulators of plant development and host-virus interactions. However, the relationship between TbCSV infection and miRNAs accumulation has not been well investigated. The present study was conducted to analyze different expressions of miRNAs in Nicotiana benthamiana in response to the infection of TbCSV via small RNAs sequencing. The results showed that 15 up-regulated miRNAs and 12 down-regulated miRNAs were differentially expressed in TbCSV infected N. benthamiana, and nbe-miR167b-3p was down-regulated. To decipher the relationship between nbe-miR167b-3p expression and the accumulations of TbCSV DNA, pCVA mediation of miRNA overexpression and PVX based short tandem target mimic (STTM) were used in this study. It was found that overexpression of nbe-miR167b-3p attenuated leaf curling symptom of TbCSV and decreased viral DNA accumulation, but suppression of nbe-miR167b-3p expression enhanced the symptoms and accumulation of TbCSV. PRCP, the target gene of nbe-miR167b-3p, was silenced in plants using VIGS and this weakened the viral symptoms and DNA accumulation of TbCSV in the plants. Overall, this study clarified the effect of nbe-miR167b-3p on plant defense during TbCSV infection, and provided a framework to reveal the molecular mechanisms of miRNAs between plants and viruses.
Collapse
Affiliation(s)
- Rui Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Lyuxin Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Xu Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhuoying Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Wanzhong Tan
- College of Tropical Crops Sciences, Yunnan Agricultural University, Kunming, China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
- *Correspondence: Ling Qing,
| |
Collapse
|
3
|
Li HL, Guo D, Wang Y, Zhu JH, Qu L, Peng SQ. Tobacco rattle virus-induced gene silencing in Hevea brasiliensis. Biosci Biotechnol Biochem 2021; 85:562-567. [PMID: 33590039 DOI: 10.1093/bbb/zbaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Virus-induced gene silencing (VIGS) is a powerful gene-silencing tool that has been intensively applied in plants. To data, the application of VIGS in rubber tree has not yet been reported. In this study, we described the efficient gene silencing in rubber tree by VIGS. The gene encoding Hevea brasiliensis phytoene desaturase (HbPDS) was identified in rubber tree genome. Small interfering RNAs from HbPDS and the silencing gene fragment were predicted and a length of 399 bp was selected to be tested. We showed that the tobacco rattle virus (TRV)-VIGS could induce effective HbPDS silencing in rubber tree. This study was the first to report VIGS in rubber tree. The present TRV-VIGS method could be used to perform reverse genetic approaches to identify unknown gene functions and might be further applied to produce gene silenced rubber tree plants, to advance functional gene of rubber tree.
Collapse
Affiliation(s)
- Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jia-Hong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Long Qu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| |
Collapse
|
4
|
Du J, Wu R, Liu Z, Sun M, Ghanem H, Li M, Wu G, Qing L. Suppression of nbe-miR1919c-5p Expression in Nicotiana benthamiana Enhances Tobacco Curly Shoot Virus and Its Betasatellite Co-Infection. Viruses 2020; 12:E392. [PMID: 32244650 PMCID: PMC7232422 DOI: 10.3390/v12040392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding but functional RNA molecules of 21-25 nucleotides in length. MiRNAs play significant regulatory roles in diverse plant biological processes. In order to decipher the relationship between nbe-miR1919c-5p and the accumulations of tobacco curly shoot virus (TbCSV) and its betasatellite (TbCSB) DNAs, as well as viral symptom development, we investigated the function of nbe-miR1919c-5p during TbCSV and TbCSB co-infection in plants using a PVX-and a TRV-based short tandem target mimic (STTM) technology. Suppression of nbe-miR1919c-5p expression using these two technologies enhanced TbCSV and TbCSB co-infection-induced leaf curling symptoms in Nicotiana benthamiana plants. Furthermore, suppression of nbe-miR1919c-5p expression enhanced TbCSV and TbCSB DNA accumulations in the infected plants. Our results can advance our knowledge on the nbe-miR1919c-5p function during TbCSV and TbCSB co-infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; (J.D.); (R.W.); (Z.L.); (M.S.); (H.G.); (M.L.)
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; (J.D.); (R.W.); (Z.L.); (M.S.); (H.G.); (M.L.)
| |
Collapse
|
5
|
Peng X, Ma X, Lu S, Li Z. A Versatile Plant Rhabdovirus-Based Vector for Gene Silencing, miRNA Expression and Depletion, and Antibody Production. FRONTIERS IN PLANT SCIENCE 2020; 11:627880. [PMID: 33510764 PMCID: PMC7835261 DOI: 10.3389/fpls.2020.627880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 05/12/2023]
Abstract
Plant virus vectors are ideal tools for delivery of genetic cargo into host cells for functional genomics studies and protein overexpression. Although a vast number of plant virus vectors have been developed for different purposes, the utility of a particular virus vector is generally limited. Here, we report a multipurpose plant rhabdovirus-based vector system suitable for a wide range of applications in Nicotiana benthamiana. We engineered sonchus yellow net rhabdovirus (SYNV)-based gene silencing vectors through expressing a sense, antisense, or double-stranded RNAs of target genes. Robust target gene silencing was also achieved with an SYNV vector expressing a designed artificial microRNA. In addition, ectopic expression of a short tandem target mimic RNA using the SYNV vector led to a significant depletion of the target miR165/166 and caused abnormal leaf development. More importantly, SYNV was able to harbor two expression cassettes that permitted simultaneous RNA silencing and overexpression of large reporter gene. This dual capacity vector also enabled systemic expression of a whole-molecule monoclonal antibody consisting of light and heavy chains. These results highlight the utility of the SYNV vector system in gene function studies and agricultural biotechnology and provide a technical template for developing similar vectors of other economically important plant rhabdoviruses.
Collapse
Affiliation(s)
- Xingxing Peng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuting Lu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- *Correspondence: Zhenghe Li,
| |
Collapse
|
6
|
Technologies to Address Plant microRNA Functions. CONCEPTS AND STRATEGIES IN PLANT SCIENCES 2020. [DOI: 10.1007/978-3-030-35772-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Schachtsiek J, Hussain T, Azzouhri K, Kayser O, Stehle F. Virus-induced gene silencing (VIGS) in Cannabis sativa L. PLANT METHODS 2019; 15:157. [PMID: 31889981 PMCID: PMC6931244 DOI: 10.1186/s13007-019-0542-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The raised demand of cannabis as a medicinal plant in recent years led to an increased interest in understanding the biosynthetic routes of cannabis metabolites. Since there is no established protocol to generate stable gene knockouts in cannabis, the use of a virus-induced gene silencing (VIGS) method, resulting in a gene knockdown, to study gene functions is desirable. RESULTS For this, a computational approach was employed to analyze the Cannabis sativa L. transcriptomic and genomic resources. Reporter genes expected to give rise to easily scorable phenotypes upon silencing, i.e. the phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI), were identified in C. sativa. Subsequently, the targets of specific small interfering RNAs (siRNAs) and silencing fragments were predicted and tested in a post-transcriptional gene silencing (PTGS) approach. Here we show for the first time a gene knockdown in C. sativa using the Cotton leaf crumple virus (CLCrV) in a silencing vector system. Plants transiently transformed with the Agrobacterium tumefaciens strain AGL1, carrying the VIGS-vectors, showed the desired phenotypes, spotted bleaching of the leaves. The successful knockdown of the genes was additionally validated by quantitative PCR resulting in reduced expression of transcripts from 70 to 73% for ChlI and PDS, respectively. This is accompanied with the reduction of the chlorophyll a and carotenoid content, respectively. In summary, the data clearly demonstrate the potential for functional gene studies in cannabis using the CLCrV-based vector system. CONCLUSIONS The applied VIGS-method can be used for reverse genetic studies in C. sativa to identify unknown gene functions. This will gain deeper inside into unknown biosynthetic routes and will help to close the gap between available genomic data and biochemical information of this important medicinal plant.
Collapse
Affiliation(s)
- Julia Schachtsiek
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Tajammul Hussain
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Khadija Azzouhri
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Oliver Kayser
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Felix Stehle
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
8
|
Zhou Q, Li Q, Li P, Zhang S, Liu C, Jin J, Cao P, Yang Y. Carotenoid Cleavage Dioxygenases: Identification, Expression, and Evolutionary Analysis of This Gene Family in Tobacco. Int J Mol Sci 2019; 20:E5796. [PMID: 31752180 PMCID: PMC6888377 DOI: 10.3390/ijms20225796] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) selectively catalyze carotenoids, forming smaller apocarotenoids that are essential for the synthesis of apocarotenoid flavor, aroma volatiles, and phytohormone ABA/SLs, as well as responses to abiotic stresses. Here, 19, 11, and 10 CCD genes were identified in Nicotiana tabacum, Nicotiana tomentosiformis, and Nicotiana sylvestris, respectively. For this family, we systematically analyzed phylogeny, gene structure, conserved motifs, gene duplications, cis-elements, subcellular and chromosomal localization, miRNA-target sites, expression patterns with different treatments, and molecular evolution. CCD genes were classified into two subfamilies and nine groups. Gene structures, motifs, and tertiary structures showed similarities within the same groups. Subcellular localization analysis predicted that CCD family genes are cytoplasmic and plastid-localized, which was confirmed experimentally. Evolutionary analysis showed that purifying selection dominated the evolution of these genes. Meanwhile, seven positive sites were identified on the ancestor branch of the tobacco CCD subfamily. Cis-regulatory elements of the CCD promoters were mainly involved in light-responsiveness, hormone treatment, and physiological stress. Different CCD family genes were predominantly expressed separately in roots, flowers, seeds, and leaves and exhibited divergent expression patterns with different hormones (ABA, MeJA, IAA, SA) and abiotic (drought, cold, heat) stresses. This study provides a comprehensive overview of the NtCCD gene family and a foundation for future functional characterization of individual genes.
Collapse
Affiliation(s)
- Qianqian Zhou
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| | - Qingchang Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450002, China; (Q.L.); (J.J.); (P.C.)
| | - Peng Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| | - Songtao Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| | - Che Liu
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| | - Jingjing Jin
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450002, China; (Q.L.); (J.J.); (P.C.)
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450002, China; (Q.L.); (J.J.); (P.C.)
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| |
Collapse
|
9
|
Paschoal AR, Lozada-Chávez I, Domingues DS, Stadler PF. ceRNAs in plants: computational approaches and associated challenges for target mimic research. Brief Bioinform 2019; 19:1273-1289. [PMID: 28575144 DOI: 10.1093/bib/bbx058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/27/2017] [Indexed: 11/13/2022] Open
Abstract
The competing endogenous RNA hypothesis has gained increasing attention as a potential global regulatory mechanism of microRNAs (miRNAs), and as a powerful tool to predict the function of many noncoding RNAs, including miRNAs themselves. Most studies have been focused on animals, although target mimic (TMs) discovery as well as important computational and experimental advances has been developed in plants over the past decade. Thus, our contribution summarizes recent progresses in computational approaches for research of miRNA:TM interactions. We divided this article in three main contributions. First, a general overview of research on TMs in plants is presented with practical descriptions of the available literature, tools, data, databases and computational reports. Second, we describe a common protocol for the computational and experimental analyses of TM. Third, we provide a bioinformatics approach for the prediction of TM motifs potentially cross-targeting both members within the same or from different miRNA families, based on the identification of consensus miRNA-binding sites from known TMs across sequenced genomes, transcriptomes and known miRNAs. This computational approach is promising because, in contrast to animals, miRNA families in plants are large with identical or similar members, several of which are also highly conserved. From the three consensus TM motifs found with our approach: MIM166, MIM171 and MIM159/319, the last one has found strong support on the recent experimental work by Reichel and Millar [Specificity of plant microRNA TMs: cross-targeting of mir159 and mir319. J Plant Physiol 2015;180:45-8]. Finally, we stress the discussion on the major computational and associated experimental challenges that have to be faced in future ceRNA studies.
Collapse
Affiliation(s)
| | - Irma Lozada-Chávez
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
| | - Douglas Silva Domingues
- Department of Botany, Institute of Biosciences, S~ao Paulo State University (UNESP) in Rio Claro, Brazil
| | | |
Collapse
|
10
|
Wang W, Liu D, Chen D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol 2019; 16:362-375. [PMID: 30676211 PMCID: PMC6380294 DOI: 10.1080/15476286.2019.1574163] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022] Open
Abstract
Salinity stress is a major abiotic stress affecting the productivity and fiber quality of cotton. Although reactive oxygen species (ROS) play critical roles in plant stress responses, their complex molecular regulatory mechanism under salinity stress is largely unknown in cotton, especially microRNA (miRNA)-mediated regulation of superoxide dismutase gene expression. Here, we report that a cotton iron superoxide dismutase gene GhFSD1 and the cotton miRNA ghr-miR414c work together in response to salinity stress. The miRNA ghr-miR414c targets the coding sequence region of GhFSD1, inhibiting expression of transcripts of this antioxidase gene, which represents the first line of defense against stress-induced ROS. Expression of GhFSD1 was induced by salinity stress. Under salinity stress, ghr-miR414c showed expression patterns opposite to those of GhFSD1. Ectopic expression of GhFSD1 in Arabidopsis conferred salinity stress tolerance by improving primary root growth and biomass, whereas Arabidopsis constitutively expressing ghr-miR414c showed hypersensitivity to salinity stress. Silencing GhFSD1 in cotton caused an excessive hypersensitive phenotype to salinity stress, whereas overexpressing miR414c decreased the expression of GhFSD1 and increased sensitivity to salinity stress, yielding a phenotype similar to that of GhFSD1-silenced cotton. Taken together, our results demonstrated that ghr-miR414c was involved in regulation of plant response to salinity stress by targeting GhFSD1 transcripts. This study provides a new strategy and method for plant breeding in order to improve plant salinity tolerance.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Wang S, Cui W, Wu X, Yuan Q, Zhao J, Zheng H, Lu Y, Peng J, Lin L, Chen J, Yan F. Suppression of nbe-miR166h-p5 attenuates leaf yellowing symptoms of potato virus X on Nicotiana benthamiana and reduces virus accumulation. MOLECULAR PLANT PATHOLOGY 2018; 19:2384-2396. [PMID: 30011130 PMCID: PMC6638021 DOI: 10.1111/mpp.12717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/22/2018] [Accepted: 05/20/2018] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in plant development. There is increasing evidence that changed expression of miRNAs in virus-infected plants contributes to the development of viral symptoms. Here, we analysed the altered expression of miRNAs of Nicotiana benthamiana in response to Potato virus X (PVX) by Illumina Solexa sequencing. One of the 21 miRNAs significantly affected, nbe-miR166h-p5, was closely associated with viral symptoms. Using the Tobacco rattle virus-based miRNA suppression (VbMS) system, we found that the suppression of nbe-miR166h-p5 in plants caused leaves to turn dark green with increased chlorophyll. When PVX was inoculated on nbe-miR166h-p5-suppressed plants, the leaf yellowing symptom of PVX was largely attenuated with less reduction in chlorophyll content, and the accumulation of PVX was decreased. nbe-miR166h-p5 was also up-regulated in plants infected by Turnip mosaic virus (TuMV), and its suppression attenuated the leaf yellowing symptom of TuMV and decreased viral accumulation. Three potential targets of nbe-miR166h-p5 were identified. The results indicate the association of nbe-miR166h-p5 with symptoms of PVX and also with those of TuMV, providing useful information on the relationship between miRNA and viral infection.
Collapse
Affiliation(s)
- Shu Wang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Weijun Cui
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Xinyang Wu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Quan Yuan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- College of Plant ProtectionNorthwest A & F UniversityYangling712100China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Jianping Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| |
Collapse
|
12
|
Zhao J, Liu Q, Hu P, Jia Q, Liu N, Yin K, Cheng Y, Yan F, Chen J, Liu Y. An efficient Potato virus X -based microRNA silencing in Nicotiana benthamiana. Sci Rep 2016; 6:20573. [PMID: 26837708 PMCID: PMC4738334 DOI: 10.1038/srep20573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/06/2016] [Indexed: 01/25/2023] Open
Abstract
Plant microRNAs (miRNAs) play pivotal roles in many biological processes. Although many miRNAs have been identified in various plant species, the functions of these miRNAs remain largely unknown due to the shortage of effective genetic tools to block their functional activity. Recently, miRNA target mimic (TM) technologies have been applied to perturb the activity of specific endogenous miRNA or miRNA families. We previously reported that Tobacco rattle virus (TRV)-based TM expression can successfully mediate virus-based miRNA silencing/suppression (VbMS) in plants. In this study, we show the Potato virus X (PVX)-based TM expression causes strong miRNA silencing in Nicotiana benthamiana. The PVX-based expression of short tandem target mimic (STTMs) against miR165/166 and 159 caused the corresponding phenotype in all infected plants. Thus, a PVX-based VbMS is a powerful method to study miRNA function and may be useful for high-throughput investigation of miRNA function in N. benthamiana.
Collapse
Affiliation(s)
- Jinping Zhao
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- The State Key Laboratory Breeding Base for Sustainable control of Pest and Disease, Hangzhou, 310021, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingtao Liu
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pu Hu
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Jia
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Na Liu
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kangquan Yin
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye Cheng
- The State Key Laboratory Breeding Base for Sustainable control of Pest and Disease, Hangzhou, 310021, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable control of Pest and Disease, Hangzhou, 310021, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianping Chen
- The State Key Laboratory Breeding Base for Sustainable control of Pest and Disease, Hangzhou, 310021, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yule Liu
- Center for Plant Biology, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Liao Q, Tu Y, Carr JP, Du Z. An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs. Sci Rep 2015; 5:13178. [PMID: 26278008 PMCID: PMC4538387 DOI: 10.1038/srep13178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/08/2015] [Indexed: 12/05/2022] Open
Abstract
We previously devised a cucumber mosaic virus (CMV)-based vector system carrying microRNA target mimic sequences for analysis of microRNA function in Arabidopsis thaliana. We describe an improved version in which target mimic cloning is achieved by annealing two partly-overlapping complementary DNA oligonucleotides for insertion into an infectious clone of CMV RNA3 (LS strain) fused to the cauliflower mosaic virus-derived 35S promoter. LS-CMV variants carrying mimic sequences were generated by co-infiltrating plants with Agrobacterium tumefaciens cells harboring engineered RNA3 with cells carrying RNA1 and RNA2 infectious clones. The utility of using agroinfection to deliver LS-CMV-derived microRNA target mimic sequences was demonstrated using a miR165/166 target mimic and three solanaceous hosts: Nicotiana benthamiana, tobacco (N. tabacum), and tomato (Solanum lycopersicum). In all three hosts the miR165/166 target mimic induced marked changes in developmental phenotype. Inhibition of miRNA accumulation and increased target mRNA (HD-ZIP III) accumulation was demonstrated in tomato. Thus, a CMV-derived target mimic delivered via agroinfection is a simple, cheap and powerful means of launching virus-based miRNA mimics and is likely to be useful for high-throughput investigation of miRNA function in a wide range of plants.
Collapse
Affiliation(s)
- Qiansheng Liao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifei Tu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Zhiyou Du
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
14
|
Reichel M, Millar AA. Specificity of plant microRNA target MIMICs: Cross-targeting of miR159 and miR319. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:45-48. [PMID: 25899728 DOI: 10.1016/j.jplph.2015.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Plant microRNA (miRNA) target MIMICs (MIMs) are non-coding RNA transcripts that can inhibit endogenous miRNAs, as they contain a miRNA binding site that forms a three nucleotide (nt) mismatch loop opposite the miRNA cleavage site upon miRNA binding. This loop renders the MIMs non-cleavable, presumably leading to sequestration of the miRNA and thus enabling the endogenous targets to be deregulated. Arabidopsis miR319 and miR159 are two closely related but distinct miRNA families, as they are functionally specific for two different sets of targets, TCP and MYB genes, respectively. Being offset by one nt, MIM319 and MIM159 should have specificity to their respective miRNA families. However, MIM319 and MIM159 plants appear indistinguishable, having highly similar developmental defects reminiscent of a loss-of-function mir159 mutant. In both MIM319 and MIM159 plants, miR159 and miR319 levels are reduced, and correspondingly, both MYB and TCP mRNA levels are elevated, implying that these MIMs are inhibiting both miR159 and miR319. These data demonstrate that MIMs are able to inhibit closely related miRNAs, including those with cleavage sites not opposite the three nt loop. This highlights that MIMs can have unintended off-target effects and that their use should include corresponding molecular analysis to investigate their impact on closely related miRNAs.
Collapse
Affiliation(s)
- Marlene Reichel
- Plant Science Division, Research School of Biology, Australian National University, 2601 ACT, Australia
| | - Anthony A Millar
- Plant Science Division, Research School of Biology, Australian National University, 2601 ACT, Australia.
| |
Collapse
|