1
|
Bertelmann C, Bühler B. Strategies found not to be suitable for stabilizing high steroid hydroxylation activities of CYP450 BM3-based whole-cell biocatalysts. PLoS One 2024; 19:e0309965. [PMID: 39240904 PMCID: PMC11379211 DOI: 10.1371/journal.pone.0309965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
The implementation of biocatalytic steroid hydroxylation processes plays a crucial role in the pharmaceutical industry due to a plethora of medicative effects of hydroxylated steroid derivatives and their crucial role in drug approval processes. Cytochrome P450 monooxygenases (CYP450s) typically constitute the key enzymes catalyzing these reactions, but commonly entail drawbacks such as poor catalytic rates and the dependency on additional redox proteins for electron transfer from NAD(P)H to the active site. Recently, these bottlenecks were overcome by equipping Escherichia coli cells with highly active variants of the self-sufficient single-component CYP450 BM3 together with hydrophobic outer membrane proteins facilitating cellular steroid uptake. The combination of the BM3 variant KSA14m and the outer membrane pore AlkL enabled exceptionally high testosterone hydroxylation rates of up to 45 U gCDW-1 for resting (i.e., living but non-growing) cells. However, a rapid loss of specific activity heavily compromised final product titers and overall space-time yields. In this study, several stabilization strategies were evaluated on enzyme-, cell-, and reaction level. However, neither changes in biocatalyst configuration nor variation of cultivation media, expression systems, or inducer concentrations led to considerable improvement. This qualified the so-far used genetic construct pETM11-ksa14m-alkL, M9 medium, and the resting-cell state as the best options enabling comparatively efficient activity along with fast growth prior to biotransformation. In summary, we report several approaches not enabling a stabilization of the high testosterone hydroxylation rates, providing vital guidance for researchers tackling similar CYP450 stability issues. A comparison with more stable natively steroid-hydroxylating CYP106A2 and CYP154C5 in equivalent setups further highlighted the high potential of the investigated CYP450 BM3-based whole-cell biocatalysts. The immense and continuously developing repertoire of enzyme engineering strategies provides promising options to stabilize the highly active biocatalysts.
Collapse
Affiliation(s)
- Carolin Bertelmann
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| | - Bruno Bühler
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| |
Collapse
|
2
|
Nerke P, Korb J, Haala F, Hubmann G, Lütz S. Metabolic bottlenecks of Pseudomonas taiwanensis VLB120 during growth on d-xylose via the Weimberg pathway. Metab Eng Commun 2024; 18:e00241. [PMID: 39021639 PMCID: PMC11252243 DOI: 10.1016/j.mec.2024.e00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The microbial production of value-added chemicals from renewable feedstocks is an important step towards a sustainable, bio-based economy. Therefore, microbes need to efficiently utilize lignocellulosic biomass and its dominant constituents, such as d-xylose. Pseudomonas taiwanensis VLB120 assimilates d-xylose via the five-step Weimberg pathway. However, the knowledge about the metabolic constraints of the Weimberg pathway, i.e., its regulation, dynamics, and metabolite fluxes, is limited, which hampers the optimization and implementation of this pathway for bioprocesses. We characterized the Weimberg pathway activity of P. taiwanensis VLB120 in terms of biomass growth and the dynamics of pathway intermediates. In batch cultivations, we found excessive accumulation of the intermediates d-xylonolactone and d-xylonate, indicating bottlenecks in d-xylonolactone hydrolysis and d-xylonate uptake. Moreover, the intermediate accumulation was highly dependent on the concentration of d-xylose and the extracellular pH. To encounter the apparent bottlenecks, we identified and overexpressed two genes coding for putative endogenous xylonolactonases PVLB_05820 and PVLB_12345. Compared to the control strain, the overexpression of PVLB_12345 resulted in an increased growth rate and biomass generation of up to 30 % and 100 %, respectively. Next, d-xylonate accumulation was decreased by overexpressing two newly identified d-xylonate transporter genes, PVLB_18545 and gntP (PVLB_13665). Finally, we combined xylonolactonase overexpression with enhanced uptake of d-xylonate by knocking out the gntP repressor gene gntR (PVLB_13655) and increased the growth rate and biomass yield by 50 % and 24 % in stirred-tank bioreactors, respectively. Our study contributes to the fundamental knowledge of the Weimberg pathway in pseudomonads and demonstrates how to encounter the metabolic bottlenecks of the Weimberg pathway to advance strain developments and cell factory design for bioprocesses on renewable feedstocks.
Collapse
Affiliation(s)
- Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Jonas Korb
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Frederick Haala
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Georg Hubmann
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Asin-Garcia E, Garcia-Morales L, Bartholet T, Liang Z, Isaacs F, Martins dos Santos VP. Metagenomics harvested genus-specific single-stranded DNA-annealing proteins improve and expand recombineering in Pseudomonas species. Nucleic Acids Res 2023; 51:12522-12536. [PMID: 37941137 PMCID: PMC10711431 DOI: 10.1093/nar/gkad1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
The widespread Pseudomonas genus comprises a collection of related species with remarkable abilities to degrade plastics and polluted wastes and to produce a broad set of valuable compounds, ranging from bulk chemicals to pharmaceuticals. Pseudomonas possess characteristics of tolerance and stress resistance making them valuable hosts for industrial and environmental biotechnology. However, efficient and high-throughput genetic engineering tools have limited metabolic engineering efforts and applications. To improve their genome editing capabilities, we first employed a computational biology workflow to generate a genus-specific library of potential single-stranded DNA-annealing proteins (SSAPs). Assessment of the library was performed in different Pseudomonas using a high-throughput pooled recombinase screen followed by Oxford Nanopore NGS analysis. Among different active variants with variable levels of allelic replacement frequency (ARF), efficient SSAPs were found and characterized for mediating recombineering in the four tested species. New variants yielded higher ARFs than existing ones in Pseudomonas putida and Pseudomonas aeruginosa, and expanded the field of recombineering in Pseudomonas taiwanensisand Pseudomonas fluorescens. These findings will enhance the mutagenesis capabilities of these members of the Pseudomonas genus, increasing the possibilities for biotransformation and enhancing their potential for synthetic biology applications. .
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Tessa Bartholet
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Zhuobin Liang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Vitor A P Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
- LifeGlimmer GmbH, Berlin 12163, Germany
| |
Collapse
|
4
|
Schwanemann T, Otto M, Wierckx N, Wynands B. Pseudomonasas Versatile Aromatics Cell Factory. Biotechnol J 2020; 15:e1900569. [DOI: 10.1002/biot.201900569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Tobias Schwanemann
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Maike Otto
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Nick Wierckx
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Benedikt Wynands
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| |
Collapse
|
5
|
Schäfer L, Bühler K, Karande R, Bühler B. Rational Engineering of a Multi‐Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in
Pseudomonas taiwanensis. Biotechnol J 2020; 15:e2000091. [DOI: 10.1002/biot.202000091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Lisa Schäfer
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Katja Bühler
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Rohan Karande
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Bruno Bühler
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| |
Collapse
|
6
|
Doukyu N, Iida S. Production of styrene oxide from styrene by a recombinant Escherichia coli with enhanced AcrAB-TolC efflux pump level in an aqueous-organic solvent two-phase system. Biosci Biotechnol Biochem 2020; 84:1513-1520. [PMID: 32310021 DOI: 10.1080/09168451.2020.1755219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The AcrAB-TolC efflux pump is involved in the organic solvent tolerance of Escherichia coli. Most E. coli strains are highly sensitive to organic solvents such as n-hexane and cyclohexane. Here, a recombinant E. coli transformed with an expression plasmid containing acrAB and tolC became tolerant to n-hexane and cyclohexane. The levels of AcrA, AcrB, and TolC in the recombinant increased by 3- to 5-fold compared to those in the control strain without the plasmid for acrAB or tolC. To investigate the usability of the recombinant as a biocatalyst in an aqueous-organic solvent two-phase system, we further introduced xylMA xylene monooxygenase genes from Pseudomonas putida mt-2 into the recombinant and examined the production of styrene oxide from styrene. The resulting recombinant produced 1.8 mg and 1.0 mg styrene oxide mL-1 of medium in a medium overlaid with a 25% volume of n-hexane and cyclohexane containing 10% (wt vol-1) styrene, respectively.
Collapse
Affiliation(s)
- Noriyuki Doukyu
- Department of Life Science, Toyo University , Gunma, Japan.,Bio-Nano Electronic Research Center, Toyo University , Kawagoe, Saitama, Japan
| | - Shinichiro Iida
- Department of Life Science, Toyo University , Gunma, Japan.,Bio-Nano Electronic Research Center, Toyo University , Kawagoe, Saitama, Japan
| |
Collapse
|
7
|
Schäfer L, Karande R, Bühler B. Maximizing Biocatalytic Cyclohexane Hydroxylation by Modulating Cytochrome P450 Monooxygenase Expression in P. taiwanensis VLB120. Front Bioeng Biotechnol 2020; 8:140. [PMID: 32175317 PMCID: PMC7056670 DOI: 10.3389/fbioe.2020.00140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 01/31/2023] Open
Abstract
Cytochrome P450 monooxygenases (Cyps) effectively catalyze the regiospecific oxyfunctionalization of inert C-H bonds under mild conditions. Due to their cofactor dependency and instability in isolated form, oxygenases are preferably applied in living microbial cells with Pseudomonas strains constituting potent host organisms for Cyps. This study presents a holistic genetic engineering approach, considering gene dosage, transcriptional, and translational levels, to engineer an effective Cyp-based whole-cell biocatalyst, building on recombinant Pseudomonas taiwanensis VLB120 for cyclohexane hydroxylation. A lac-based regulation system turned out to be favorable in terms of orthogonality to the host regulatory network and enabled a remarkable specific whole-cell activity of 34 U gCDW -1. The evaluation of different ribosomal binding sites (RBSs) revealed that a moderate translation rate was favorable in terms of the specific activity. An increase in gene dosage did only slightly elevate the hydroxylation activity, but severely impaired growth and resulted in a large fraction of inactive Cyp. Finally, the introduction of a terminator reduced leakiness. The optimized strain P. taiwanensis VLB120 pSEVA_Cyp allowed for a hydroxylation activity of 55 U gCDW -1. Applying 5 mM cyclohexane, molar conversion and biomass-specific yields of 82.5% and 2.46 mmolcyclohexanol gbiomass -1 were achieved, respectively. The strain now serves as a platform to design in vivo cascades and bioprocesses for the production of polymer building blocks such as ε-caprolactone.
Collapse
Affiliation(s)
- Lisa Schäfer
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
8
|
Willrodt C, Gröning JAD, Nerke P, Koch R, Scholtissek A, Heine T, Schmid A, Bühler B, Tischler D. Highly Efficient Access to (
S
)‐Sulfoxides Utilizing a Promiscuous Flavoprotein Monooxygenase in a Whole‐Cell Biocatalyst Format. ChemCatChem 2020. [DOI: 10.1002/cctc.201901894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Christian Willrodt
- Department Solar Materials Helmholtz Center for Environmental Research GmbH – UFZ Permoser Str. 15 Leipzig 04138 Germany
- Present address: BASF SE Carl-Bosch-Straße 38 Ludwigshafen am Rhein 67063 Germany
| | - Janosch A. D. Gröning
- Environmental Microbiology Group Institute of Biosciences TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
- Present address: Institut für Mikrobiologie Universität Stuttgart Allmandring 31 Stuttgart 70569 Germany
| | - Philipp Nerke
- Department Solar Materials Helmholtz Center for Environmental Research GmbH – UFZ Permoser Str. 15 Leipzig 04138 Germany
| | - Rainhard Koch
- Engineering and Technology Bayer AG Kaiser-Wilhelm Allee 3 Leverkusen 51373 Germany
| | - Anika Scholtissek
- Environmental Microbiology Group Institute of Biosciences TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
| | - Thomas Heine
- Environmental Microbiology Group Institute of Biosciences TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
| | - Andreas Schmid
- Department Solar Materials Helmholtz Center for Environmental Research GmbH – UFZ Permoser Str. 15 Leipzig 04138 Germany
| | - Bruno Bühler
- Department Solar Materials Helmholtz Center for Environmental Research GmbH – UFZ Permoser Str. 15 Leipzig 04138 Germany
| | - Dirk Tischler
- Environmental Microbiology Group Institute of Biosciences TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
- Microbial Biotechnology Ruhr University Bochum Universitätsstr. 150 Bochum 44801 Germany
| |
Collapse
|
9
|
Heine T, Scholtissek A, Hofmann S, Koch R, Tischler D. Accessing Enantiopure Epoxides and Sulfoxides: Related Flavin‐Dependent Monooxygenases Provide Reversed Enantioselectivity. ChemCatChem 2019. [DOI: 10.1002/cctc.201901353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Heine
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Anika Scholtissek
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Sarah Hofmann
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Rainhard Koch
- Engineering & TechnologyBayer AG Leverkusen 51368 Germany
| | - Dirk Tischler
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
- Microbial BiotechnologyRuhr University Bochum Bochum 44780 Germany
| |
Collapse
|
10
|
Wynands B, Otto M, Runge N, Preckel S, Polen T, Blank LM, Wierckx N. Streamlined Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features. ACS Synth Biol 2019; 8:2036-2050. [PMID: 31465206 DOI: 10.1021/acssynbio.9b00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
Collapse
Affiliation(s)
- Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadine Runge
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sarah Preckel
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
11
|
Volmer J, Lindmeyer M, Seipp J, Schmid A, Bühler B. Constitutively solvent‐tolerantPseudomonas taiwanensisVLB120∆C∆ttgVsupports particularly high‐styrene epoxidation activities when grown under glucose excess conditions. Biotechnol Bioeng 2019; 116:1089-1101. [DOI: 10.1002/bit.26924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jan Volmer
- Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmund Germany
| | - Martin Lindmeyer
- Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmund Germany
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH–UFZLeipzig Germany
| | - Julia Seipp
- Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmund Germany
| | - Andreas Schmid
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH–UFZLeipzig Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH–UFZLeipzig Germany
| |
Collapse
|
12
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
13
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
14
|
Ferreira GNM, Glassey J. Editorial: The European Symposium on Biochemical Engineering Sciences, Dublin 2016. Biotechnol J 2017; 12. [PMID: 28675668 DOI: 10.1002/biot.201600634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The European Symposium on Biochemical Engineering Sciences, Dublin 2016.
Collapse
Affiliation(s)
- Guilherme N M Ferreira
- DSM Biotechnology Center, Delft, The Netherlands.,Universidade do Algarve, Faro, Portugal
| | | |
Collapse
|