1
|
Dietz K, Sagstetter C, Speck M, Roth A, Klamt S, Fabarius JT. A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid. Microb Cell Fact 2024; 23:344. [PMID: 39716233 DOI: 10.1186/s12934-024-02583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
The conversion of CO2 into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M. extorquens TK 0001 for production of glycolic acid. Application of constraint-based metabolic modeling reveals the great potential of M. extorquens for that purpose, which is not yet described in literature. In particular, a superior theoretical product yield of 1.0 C-molGlycolic acid C-molMethanol-1 is predicted by our model, surpassing theoretical yields of sugar fermentation. Following this approach, we show here that strain engineering is viable and present 1st generation strains producing glycolic acid via a heterologous NADPH-dependent glyoxylate reductase. It was found that lactic acid is a surprising by-product of glycolic acid formation in M. extorquens, most likely due to a surplus of available NADH upon glycolic acid synthesis. Finally, the best performing strain was tested in a fed-batch fermentation producing a mixture of up to total 1.2 g L-1 glycolic acid and lactic acid. Several key performance indicators of our glycolic acid producer strain are superior to state-of-the-art synthetic methylotrophs. The presented results open the door for further strain engineering of the native methylotroph M. extorquens and pave the way to produce two promising biopolymer building blocks from green methanol, i.e., glycolic acid and lactic acid.
Collapse
Affiliation(s)
- Katharina Dietz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Carina Sagstetter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Melanie Speck
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Arne Roth
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany
| | - Jonathan Thomas Fabarius
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany.
| |
Collapse
|
2
|
Li D, Shen J, Ding Q, Wu J, Chen X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem Funct 2024; 42:e3991. [PMID: 38532652 DOI: 10.1002/cbf.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.
Collapse
Affiliation(s)
- Dongao Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Qiang Ding
- Yichang Sanxia Pharmaceutical Co., Ltd., Yichang City, Hubei Province, China
| | - Jinyong Wu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Xiangsong Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| |
Collapse
|
3
|
Xia K, Chen Y, Liu F, Zhao X, Sha R, Huang J. Adaptive responses of erythritol-producing Yarrowia lipolytica to thermal stress after evolution. Appl Microbiol Biotechnol 2024; 108:263. [PMID: 38489040 PMCID: PMC10943161 DOI: 10.1007/s00253-024-13103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Elucidation of the thermotolerance mechanism of erythritol-producing Yarrowia lipolytica is of great significance to breed robust industrial strains and reduce cost. This study aimed to breed thermotolerant Y. lipolytica and investigate the mechanism underlying the thermotolerant phenotype. Yarrowia lipolytica HT34, Yarrowia lipolytica HT36, and Yarrowia lipolytica HT385 that were capable of growing at 34 °C, 36 °C, and 38.5 °C, respectively, were obtained within 150 days (352 generations) by adaptive laboratory evolution (ALE) integrated with 60Co-γ radiation and ultraviolet ray radiation. Comparative genomics analysis showed that genes involved in signal transduction, transcription, and translation regulation were mutated during adaptive evolution. Further, we demonstrated that thermal stress increased the expression of genes related to DNA replication and repair, ceramide and steroid synthesis, and the degradation of branched amino acid (BCAA) and free fatty acid (FFA), while inhibiting the expression of genes involved in glycolysis and the citrate cycle. Erythritol production in thermotolerant strains was remarkably inhibited, which might result from the differential expression of genes involved in erythritol metabolism. Exogenous addition of BCAA and soybean oil promoted the growth of HT385, highlighting the importance of BCAA and FFA in thermal stress response. Additionally, overexpression of 11 out of the 18 upregulated genes individually enabled Yarrowia lipolytica CA20 to grow at 34 °C, of which genes A000121, A003183, and A005690 had a better effect. Collectively, this study provides novel insights into the adaptation mechanism of Y. lipolytica to thermal stress, which will be conducive to the construction of thermotolerant erythritol-producing strains. KEY POINTS: • ALE combined with mutagenesis is efficient for breeding thermotolerant Y. lipolytica • Genes encoding global regulators are mutated during thermal adaptive evolution • Ceramide and BCAA are critical molecules for cells to tolerate thermal stress.
Collapse
Affiliation(s)
- Kai Xia
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yuqing Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Fangmei Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xuequn Zhao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Yang H, Zhang B, Wu Z, Pan J, Chen L, Xiu X, Cai X, Liu Z, Zheng Y. Synergistic application of atmospheric and room temperature plasma mutagenesis and adaptive laboratory evolution improves the tolerance of Escherichia coli to L-cysteine. Biotechnol J 2024; 19:e2300648. [PMID: 38403408 DOI: 10.1002/biot.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
L-Cysteine production through fermentation stands as a promising technology. However, excessive accumulation of L-cysteine poses a challenge due to the potential to inflict damage on cellular DNA. In this study, we employed a synergistic approach encompassing atmospheric and room temperature plasma mutagenesis (ARTP) and adaptive laboratory evolution (ALE) to improve L-cysteine tolerance in Escherichia coli. ARTP-treated populations obtained substantial enhancement in L-cysteine tolerance by ALE. Whole-genome sequencing, transcription analysis, and reverse engineering, revealed the pivotal role of an effective export mechanism mediated by gene eamB in augmenting L-cysteine resistance. The isolated tolerant strain, 60AP03/pTrc-cysEf , achieved a 2.2-fold increase in L-cysteine titer by overexpressing the critical gene cysEf during batch fermentation, underscoring its enormous potential for L-cysteine production. The production evaluations, supplemented with L-serine, further demonstrated the stability and superiority of tolerant strains in L-cysteine production. Overall, our work highlighted the substantial impact of the combined ARTP and ALE strategy in increasing the tolerance of E. coli to L-cysteine, providing valuable insights into improving L-cysteine overproduction, and further emphasized the potential of biotechnology in industrial production.
Collapse
Affiliation(s)
- Hui Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Zidan Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Jiayuan Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Lifeng Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Xiaoling Xiu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
5
|
Koh HG, Kim J, Rao CV, Park SJ, Jin YS. Construction of a Compact Array of Microplasma Jet Devices and Its Application for Random Mutagenesis of Rhodosporidium toruloides. ACS Synth Biol 2023; 12:3406-3413. [PMID: 37864563 DOI: 10.1021/acssynbio.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A small and efficient DNA mutation-inducing machine was constructed with an array of microplasma jet devices (7 × 1) that can be operated at atmospheric pressure for microbial mutagenesis. Using this machine, we report disruption of a plasmid DNA and generation of mutants of an oleaginous yeast Rhodosporidium toruloides. Specifically, a compact-sized microplasma channel (25 × 20 × 2 mm3) capable of generating an electron density of greater than 1013 cm-3 was constructed to produce reactive species (N2*, N2+, O, OH, and Hα) under helium atmospheric conditions to induce DNA mutagenesis. The length of microplasma channels in the device played a critical role in augmenting both the volume of plasma and the concentration of reactive species. First, we confirmed that microplasma treatment can linearize a plasmid by creating nicks in vitro. Second, we treated R. toruloides cells with a jet device containing 7 microchannels for 5 min; 94.8% of the treated cells were killed, and 0.44% of surviving cells showed different colony colors as compared to their parental colony. Microplasma-based DNA mutation is energy-efficient and can be a safe alternative for inducing mutations compared to conventional methods using toxic mutagens. This compact and scalable device is amenable for industrial strain improvement involving large-scale mutagenesis.
Collapse
Affiliation(s)
- Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jinhong Kim
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Sung-Jin Park
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Jian X, Guo X, Cai Z, Wei L, Wang L, Xing XH, Zhang C. Single-cell microliter-droplet screening system (MISS Cell): An integrated platform for automated high-throughput microbial monoclonal cultivation and picking. Biotechnol Bioeng 2023; 120:778-792. [PMID: 36477904 DOI: 10.1002/bit.28300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Solid plates have been used for microbial monoclonal isolation, cultivation, and colony picking since 1881. However, the process is labor- and resource-intensive for high-throughput requirements. Currently, several instruments have been integrated for automated and high-throughput picking, but complicated and expensive. To address these issues, we report a novel integrated platform, the single-cell microliter-droplet screening system (MISS Cell), for automated, high-throughput microbial monoclonal colony cultivation and picking. We verified the monoclonality of droplet cultures in the MISS Cell and characterized culture performance. Compared with solid plates, the MISS Cell generated a larger number of monoclonal colonies with higher initial growth rates using fewer resources. Finally, we established a workflow for automated high-throughput screening of Corynebacterium glutamicum using the MISS Cell and identified high glutamate-producing strains. The MISS Cell can serve as a universal platform to efficiently produce monoclonal colonies in high-throughput applications, overcoming the limitations of solid plates to promote rapid development in biotechnology.
Collapse
Affiliation(s)
- Xingjin Jian
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Xiaojie Guo
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Zhengshuo Cai
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Longfeng Wei
- College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Liyan Wang
- Luoyang TMAXTREE Biotechnology Co., Ltd., Luoyang, China
| | - Xin-Hui Xing
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Adaptive evolutionary strategy coupled with an optimized biosynthesis process for the efficient production of pyrroloquinoline quinone from methanol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:11. [PMID: 36658601 PMCID: PMC9851590 DOI: 10.1186/s13068-023-02261-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Pyrroloquinoline quinone (PQQ), a cofactor for bacterial dehydrogenases, is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. Due to the extremely high cost of chemical synthesis and low yield of microbial synthesis, the election of effective strains and the development of dynamic fermentation strategies for enhancing PQQ production are meaningful movements to meet the large-scale industrial requirements. RESULTS A high-titer PQQ-producing mutant strain, Hyphomicrobium denitrificans FJNU-A26, was obtained by integrating ARTP (atmospheric and room‑temperature plasma) mutagenesis, adaptive laboratory evolution and high-throughput screening strategies. Afterward, the systematic optimization of the fermentation medium was conducted using a one-factor-at-a-time strategy and response surface methodology to increase the PQQ concentration from 1.02 to 1.37 g/L. The transcriptional analysis using qRT-PCR revealed that the expression of genes involved in PQQ biosynthesis were significantly upregulated when the ARTP-ALE-derived mutant was applied. Furthermore, a novel two-stage pH control strategy was introduced to address the inconsistent effects of the pH value on cell growth and PQQ production. These combined strategies led to a 148% increase in the PQQ concentration compared with that of the initial strain FJNU-6, reaching 1.52 g/L with a yield of 40.3 mg/g DCW after 144 h of fed-batch fermentation in a 5-L fermenter. CONCLUSION The characteristics above suggest that FJNU-A26 represents an effective candidate as an industrial PQQ producer, and the integrated strategies can be readily extended to other microorganisms for the large-scale production of PQQ.
Collapse
|
8
|
Adaptive Laboratory Evolution of Microorganisms: Methodology and Application for Bioproduction. Microorganisms 2022; 11:microorganisms11010092. [PMID: 36677384 PMCID: PMC9864036 DOI: 10.3390/microorganisms11010092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a useful experimental methodology for fundamental scientific research and industrial applications to create microbial cell factories. By using ALE, cells are adapted to the environment that researchers set based on their objectives through the serial transfer of cell populations in batch cultivations or continuous cultures and the fitness of the cells (i.e., cell growth) under such an environment increases. Then, omics analyses of the evolved mutants, including genome sequencing, transcriptome, proteome and metabolome analyses, are performed. It is expected that researchers can understand the evolutionary adaptation processes, and for industrial applications, researchers can create useful microorganisms that exhibit increased carbon source availability, stress tolerance, and production of target compounds based on omics analysis data. In this review article, the methodologies for ALE in microorganisms are introduced. Moreover, the application of ALE for the creation of useful microorganisms as cell factories has also been introduced.
Collapse
|
9
|
Liang G, Zhou P, Lu J, Liu H, Qi Y, Gao C, Guo L, Hu G, Chen X, Liu L. Dynamic regulation of membrane integrity to enhance l-malate stress tolerance in Candida glabrata. Biotechnol Bioeng 2021; 118:4347-4359. [PMID: 34302701 DOI: 10.1002/bit.27903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Microbial cell factories provide a sustainable and economical way to produce chemicals from renewable feedstocks. However, the accumulation of targeted chemicals can reduce the robustness of the industrial strains and affect the production performance. Here, the physiological functions of Mediator tail subunit CgMed16 at l-malate stress were investigated. Deletion of CgMed16 decreased the survival, biomass, and half-maximal inhibitory concentration (IC50 ) by 40.4%, 34.0%, and 30.6%, respectively, at 25 g/L l-malate stress. Transcriptome analysis showed that this growth defect was attributable to changes in the expression of genes involved in lipid metabolism. In addition, tolerance transcription factors CgUSV1 and CgYAP3 were found to interact with CgMed16 to regulate sterol biosynthesis and glycerophospholipid metabolism, respectively, ultimately endowing strains with excellent membrane integrity to resist l-malate stress. Furthermore, a dynamic tolerance system (DTS) was constructed based on CgUSV1, CgYAP3, and an l-malate-driven promoter Pcgr-10 to improve the robustness and productive capacity of Candida glabrata. As a result, the biomass, survival, and membrane integrity of C. glabrata 012 (with DTS) increased by 22.6%, 31.3%, and 53.8%, respectively, compared with those of strain 011 (without DTS). Therefore, at shake-flask scale, strain 012 accumulated 35.5 g/L l-malate, and the titer and productivity of l-malate increased by 32.5% and 32.1%, respectively, compared with those of strain 011. This study provides a novel strategy for the rational design and construction of DTS for dynamically enhancing the robustness of industrial strains.
Collapse
Affiliation(s)
- Guangjie Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jiaxin Lu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Meruvu H, Wu H, Jiao Z, Wang L, Fei Q. From nature to nurture: Essence and methods to isolate robust methanotrophic bacteria. Synth Syst Biotechnol 2020; 5:173-178. [PMID: 32637670 PMCID: PMC7327766 DOI: 10.1016/j.synbio.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Methanotrophic bacteria are entities with innate biocatalytic potential to biofilter and oxidize methane into simpler compounds concomitantly conserving energy, which can contribute to copious industrial applications. The future and efficacy of such industrial applications relies upon acquiring and/or securing robust methanotrophs with taxonomic and phenotypic diversity. Despite several dramatic advances, isolation of robust methanotrophs is still a long-way challenging task with several lacunae to be filled in sequentially. Methanotrophs with high tolerance to methane can be isolated and cultivated by mimicking natural environs, and adopting strategies like adaptive metabolic evolution. This review summarizes existent and innovative methods for methanotrophic isolation and purification, and their respective applications. A comprehensive description of new insights shedding light upon how to isolate and concomitantly augment robust methanotrophic metabolism in an orchestrated fashion follows.
Collapse
Affiliation(s)
- Haritha Meruvu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziyue Jiao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liyan Wang
- Luoyang TMAXTREE Biotechnology Co., Ltd., Luoyang, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Wang J, Jian X, Xing XH, Zhang C, Fei Q. Empowering a Methanol-Dependent Escherichia coli via Adaptive Evolution Using a High-Throughput Microbial Microdroplet Culture System. Front Bioeng Biotechnol 2020; 8:570. [PMID: 32733857 PMCID: PMC7363950 DOI: 10.3389/fbioe.2020.00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Recently, a methanol-essential Escherichia coli was constructed; this strain is highly dependent on a supply of gluconate as a co-substrate for growth. Adaptive laboratory evolution is commonly applied to obtain mutants with specific phenotypes under certain selected pressure. However, conventional adaptive evolution approaches are not only laborious and time consuming, but they also come with lower throughput and inefficiency. In order to empower the aforementioned E. coli with reduced gluconate usage and enhanced growth rate, an irrational strategy based on a microbial microdroplet culture (MMC) platform was developed in this study. Given the automatic high-throughput selection of the MMC, a three-stage regime of an adaptive evolution experiment via gradually decreasing the availability of gluconate during the cultivation was performed for 50 days continuously in order to obtain the mutations. Finally, a candidate mutant was obtained with a 3-fold faster growth rate, a 43% shorter lag phase, and 40% less gluconate usage compared with the starting strain. Moreover, the gene mutations of gntU, idnT, edd, and pckA were identified by analyzing the whole-genome sequencing of mutants, which are strongly associated with the efficiency of gluconate uptake and cell growth. In conclusion, we have successfully demonstrated the feasibility of using MMC platform to empower the target strain with specific requirements in a manner of labor, time efficiency, and directed evolution.
Collapse
Affiliation(s)
- Jia Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xingjin Jian
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Tsinghua University, Beijing, China
| | - Chong Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Tsinghua University, Beijing, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl Microbiol Biotechnol 2020; 104:6363-6373. [DOI: 10.1007/s00253-020-10703-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022]
|
13
|
Chen AY, Lan EI. Chemical Production from Methanol Using Natural and Synthetic Methylotrophs. Biotechnol J 2020; 15:e1900356. [DOI: 10.1002/biot.201900356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Arvin Y. Chen
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Ethan I. Lan
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
14
|
Gao X, Liu E, Yin Y, Yang L, Huang Q, Chen S, Ho CT. Enhancing Activities of Salt-Tolerant Proteases Secreted by Aspergillus oryzae Using Atmospheric and Room-Temperature Plasma Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2757-2764. [PMID: 32026695 DOI: 10.1021/acs.jafc.9b08116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aspergillus oryzae 3.042 was mutagenized using atmospheric and room-temperature plasma (ARTP) technology to enhance its salt-tolerant proteases activity. Compared to the starting strain, mutant H8 subjected to 180 s of ARTP treatment exhibited excellent genetic stability (15 generations), growth rate, and significantly increased activities of neutral proteases, alkaline proteases, and aspartyl aminopeptidase during fermentation. Mutant H8 significantly enhanced the contents of 1-5 kDa peptides, aspartic acid, serine, threonine, and cysteine in soy sauce by 16.61, 7.69, 17.30, 8.61, and 45.00%, respectively, but it had no effects on the contents of the other 14 free amino acids (FAAs) due to its slightly enhanced acidic proteases activity. Analyses of transcriptional expressions of salt-tolerant alkaline protease gene (AP, gi: 217809) and aspartyl aminopeptidase gene (AAP, gi: 6165646) indicated that their expression levels were increased by approximately 30 and 27%, respectively. But no mutation was found in the sequences of AP and AAP expression cassettes, suggesting that the increased activities of proteases in mutant H8 should be partially attributed to the increased expression of proteases. ARTP technology showed great potential in enhancing the activities of salt-tolerant proteases from A. oryzae.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ermeng Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yiyun Yin
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lixin Yang
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Sui Chen
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
15
|
Tian T, Wu D, Ng CT, Yang H, Sun J, Liu J, Lu J. A multiple-step strategy for screening Saccharomyces cerevisiae strains with improved acid tolerance and aroma profiles. Appl Microbiol Biotechnol 2020; 104:3097-3107. [PMID: 32047990 DOI: 10.1007/s00253-020-10451-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Acid tolerance and aroma profile are crucial factors for wine production in Saccharomyces cerevisiae. However, most wine yeasts to date fail to endure low-pH environments, therefore resulting in problems such as lengthened fermentation and poor flavor during acidic fruit wine production. In the present study, we established a multiple-step screening strategy, which was composed of atmospheric and room temperature plasma (ARTP), high-throughput screening (HTS), and laboratory adaptive evolution (ALE), to screen yeast strains for potential wine-producing with enhanced performances during low pH conditions. Importantly, we obtained the S. cerevisiae strain from the mutant library, ET008-c54, which displayed exhibited excellent performances in survival rate, fermentation time, aroma profile, and genetic stability. More specifically, the survival rate of ET008-c54 at low pH was increased by 10-fold, the fermentation time of greengage plum wine was shortened by about 70%, and the content of main aroma compounds was significantly increased by 52%. Collectively, we demonstrate the practical application of the screening platform designed for discovering mutant strains in winemaking technology.
Collapse
Affiliation(s)
- Tiantian Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Food Institute, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, 11604, Taiwan
| | - Hua Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junyong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark.
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
16
|
Yin N, Zhu G, Luo Q, Liu J, Chen X, Liu L. Engineering of membrane phospholipid component enhances salt stress tolerance in
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:710-720. [DOI: 10.1002/bit.27244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Nannan Yin
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Guoxing Zhu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Qiuling Luo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Jia Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Xiulai Chen
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Liming Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| |
Collapse
|
17
|
Ji-Lun H, Xiao-Yan Z, Gui-Xing W, Zhao-Hui S, Wei D, Ya-Xian Z, Fei S, Li-Yan W, Xin-Hui X, Yu-Fen W. Novel breeding approach for Japanese flounder using atmosphere and room temperature plasma mutagenesis tool. BMC Genomics 2019; 20:323. [PMID: 31035925 PMCID: PMC6489211 DOI: 10.1186/s12864-019-5681-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
Background Artificial induction of mutagenesis is effective for genetic resource innovation and breeding. However, the traditional mutation methods for fish breeding are not convenient or safe for daily use. Hence, development of a simple, safe and effective mutagenesis method with a high mutation rate and applicability to multiple fish species, is needed. Results We reported the first successful mutagenesis in a marine aquaculture fish species, Japanese flounder, Paralichthys olivaceus, using a novel atmosphere and room temperature plasma (ARTP) mutagenesis tool. ARTP treatment time was optimized for the fertilized eggs and sperm, respectively. Eggs fertilized for 60 min were treated by ARTP with a radio-frequency power input of 120 W, and the ARTP treatment time was 25 min. Under an ARTP radio-frequency power input of 200 W, the optimal treatment time for sperm diluted with Ringer’s solution by 1:40 v/v was 10 min. The ARTP-treated group presented differences in morphological traits such as body height, total length among individuals at day 90 after hatching. Whole-genome sequencing was used to reveal the mutation features of ARTP-treated individuals collected at day 120 after hatching. In total, 69.25Gb clean data were obtained from three controls and eight randomly selected ARTP-treated individuals, revealing 240,722 to 322,978 SNPs and 82,149 to 86,798 InDels located in 17,394~18,457 and 12,907~13,333 genes, respectively. The average mutation rate reached 0.064% at the genome level. Gene ontology clustering indicated that genes associated with cell components, binding function, catalytic activity, cellular process, metabolic process and biological regulation processes had higher mutation rates. Conclusions ARTP mutagenesis is a useful method for breeding of fish species to accelerate the selection of economically important traits that would benefit the aquaculture industry, given the variety of mutations detected.
Collapse
Affiliation(s)
- Hou Ji-Lun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, China.,Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Zhang Xiao-Yan
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Wang Gui-Xing
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Sun Zhao-Hui
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Du Wei
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Zhao Ya-Xian
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Si Fei
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Wang Li-Yan
- TmaxTree Biotechnology Company, Luoyang, China
| | - Xing Xin-Hui
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| | - Wang Yu-Fen
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China.
| |
Collapse
|