1
|
Zare E, Hosseini ES, Azad FS, Javid A, Javazm RR, Abessi P, Montazeri F, Hoseini SM. Replicative senescence in amniotic fluid-derived mesenchymal stem cells and its impact on their immunomodulatory properties. Histochem Cell Biol 2025; 163:34. [PMID: 40042688 DOI: 10.1007/s00418-025-02364-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 05/13/2025]
Abstract
The expansion of mesenchymal stem cells (MSCs) for clinical applications is often limited by replicative senescence, a growth arrest induced by various stresses during in vitro culture, yet its impact on the immunomodulatory properties of MSCs remains unclear. This study derived MSCs from the amniotic fluid (AF-MSCs) of seven first-trimester pregnancies, characterized them through flow cytometry, and evaluated their osteogenic differentiation potential before expanding the cells to compare immunoregulatory gene expression in proliferative and senescent states. Additionally, an assessment of the adipogenic differentiation potential of AF-MSCs from three samples was conducted following their recovery from approximately 9 months of cryopreservation, with results showing that these recovered cells retain the capacity for adipogenic differentiation. Molecular analysis revealed no significant differences in the expression of key immunoregulatory genes, such as TGFβ, IL-10, IDO, and VCAM-1, between proliferative and senescent cells, although senescent cells showed downregulation of FASL and upregulation of IL-6, COX1, and HLA-G. Markers of cell proliferation, including FOXM1 and B-MYB, were significantly downregulated in senescent cells, confirming the progression of replicative senescence. Despite expectations, the results indicated that some immunomodulatory markers remained stable or were even enhanced in senescent AF-MSCs. These findings highlight the resilience of AF-MSC immunomodulatory properties during prolonged in vitro expansion, supporting their potential for therapeutic applications despite the challenges posed by replicative senescence.
Collapse
Affiliation(s)
- Elham Zare
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Elham Sadat Hosseini
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Sadat Azad
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Amane Javid
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Reza Rafiei Javazm
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Panteha Abessi
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyed Mehdi Hoseini
- Hematology and Oncology Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Nakadate K, Saitoh H, Sakaguchi M, Miruno F, Muramatsu N, Ito N, Tadokoro K, Kawakami K. Advances in Understanding Lipopolysaccharide-Mediated Hepatitis: Mechanisms and Pathological Features. Curr Issues Mol Biol 2025; 47:79. [PMID: 39996800 PMCID: PMC11854089 DOI: 10.3390/cimb47020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
Lipopolysaccharide (LPS), a key component of Gram-negative bacterial membranes, plays a central role in the pathogenesis of inflammatory liver diseases. In this review, we aimed to explore the role of LPS in hepatic injury. Upon hepatic infiltration, LPS activates Kupffer cells via toll-like receptor 4 (TLR4) signaling, inducing proinflammatory cytokines such as tumor necrosis factor-α and interleukin-1β. These mediators amplify hepatocyte apoptosis, endothelial damage, and platelet aggregation, thereby contributing to sinusoidal thrombosis and tissue ischemia. Pathological features, such as hepatocyte shrinkage, sinusoidal expansion, and fibrin deposition, are hallmark indicators of LPS-induced hepatic inflammation. Therapeutically, aspirin shows promise for attenuating cytokine release, protecting endothelial integrity, and reducing thrombogenesis. Emerging strategies include targeting TLR4 pathways, modulating the gut-liver axis, and utilizing biomolecular approaches such as RNA interference for LPS suppression. The integration of public health interventions, such as dietary optimization and microbiome regulation, offers additional preventive measures. In this review, the dual roles of LPS in inflammation and thrombosis have been emphasized. Advancing our understanding of LPS-driven mechanisms and enhancing treatment strategies are pivotal for managing hepatic inflammation and its systemic implications. Future research should focus on refining biomarkers, optimizing therapeutic efficacy, and addressing safety concerns for clinical applications.
Collapse
Affiliation(s)
- Kazuhiko Nakadate
- Department of Functional Morphology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (H.S.); (M.S.); (F.M.); (N.M.); (N.I.); (K.T.); (K.K.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
4
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
5
|
Chen YM, Tokoda C, Tabata Y. Cell culture design for homogeneous proliferation of cells in three-dimensional nonwoven polymer scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1-15. [PMID: 37773043 DOI: 10.1080/09205063.2023.2265623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
The objective of this study is to establish strategies to uniformly proliferate cells in a three-dimensional nonwoven polyethylene terephthalate (PET)/ethylene vinyl alcohol (EVOH) scaffold by simple adjustments in seeding and culture methods and the scaffold design. The combined dynamic and static seeding (intermittent agitations at 300 rpm with 1 h interval) resulted in the highest seeding efficiency (71%) comparing to the static and continuous agitating seeding methods. Cell-attached scaffolds were cultivated under different conditions. The stirring culture permitted cells to proliferate to a significantly greater extent than the static or agitating cultures, although faster cell proliferation in the outer region of the scaffold was observed. Next, based on this observation, scaffolds were opened with holes to alleviate the cell aggregation. The effect of hole size and number of scaffolds on the distribution of cells proliferated in the scaffold was evaluated. Two of 1-mm holes showed to be an optimal adjustment to allow cells to proliferate in a homogeneous manner. After 14 days culture, both of the holes were filled by cells proliferated with a fourfold increase in the cell number. The cell viability in the scaffolds was also high upon evaluating the live/dead and 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) staining examinations. Different cell types of 3T3-L1, C3H/10T1/2, and KUM6 cells showed similar behavior of cell proliferation and distribution in the scaffold, indicating the applicability of the established procedure. It is concluded that the nonwoven PET/EVOH scaffold serves as a potential cell culture substrate for an efficient cell proliferation.
Collapse
Affiliation(s)
- Yu-Min Chen
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chihoko Tokoda
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Shibu MA, Huang CY, Ding DC. Comparison of two hepatocyte differentiation protocols in human umbilical cord mesenchymal stem cells: In vitro study. Tissue Cell 2023; 83:102153. [PMID: 37413859 DOI: 10.1016/j.tice.2023.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Human umbilical cord mesenchymal stromal cells (HUCMSCs) are an emerging source of cell therapy due to their self-renew and differentiation ability. They can differentiate into three germ layers, including the potential to generate hepatocytes. This study determined the transplantation efficiency and suitability of HUCMSCs-derived hepatocyte-like cells (HLCs) for their therapeutic application for liver diseases. This study aims to formulate ideal conditions to induce HUCMSCs into the hepatic lineage and investigate the efficiency of the differentiated HLCs based on their expression characteristics and capacity to integrate into the damaged liver of CCl4-challenged mice. Hepatocyte growth factor (HGF) and Activin A, Wnt3a were found to optimally promote the endodermal expansion of HUCMSCs, which showed phenomenal expression of hepatic markers upon differentiation in the presence of oncostatin M and dexamethasone. HUCMSCs expressed MSC-related surface markers and could undergo tri-lineage differentiations. Two hepatogenic differentiation protocols (differentiated hepatocyte protocol 1 [DHC1]: 32 days and DHC2: 15 days) were experimented with. The proliferation rate was faster in DHC2 than in DHC1 on day 7 of differentiation. The migration capability was the same in both DHC1 and DHC2. Hepatic markers like CK18, CK19, ALB, and AFP were upregulated. The mRNA levels of albumin, α1AT, αFP, CK18, TDO2, CYP3A4, CYP7A1, HNF4A, CEBPA, PPARA, and PAH were even higher in the HUCMSCs-derived HCLs than in the primary hepatocytes. Western blot confirmed HNF3B and CK18 protein expression in a step-wise manner differentiated from HUCMSCs. The metabolic function of differentiated hepatocytes was evident by increasing PAS staining and urea production. Pre-treating HUCMSCs with a hepatic differentiation medium containing HGF can drive their differentiation towards endodermal and hepatic lineages, enabling efficient integration into the damaged liver. This approach represents a potential alternative protocol for cell-based therapy that could enhance the integration potential of HUCMSC-derived HLCs.
Collapse
Affiliation(s)
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung 413, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University Hospital, Taichung 404, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien 970, Taiwan; Graduate Institute of Medical Science, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
7
|
Di SJ, Wu SY, Liu TJ, Shi YY. Stem cell therapy as a promising strategy in necrotizing enterocolitis. Mol Med 2022; 28:107. [PMID: 36068527 PMCID: PMC9450300 DOI: 10.1186/s10020-022-00536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that affects newborns, particularly preterm infants, and is associated with high morbidity and mortality. No effective therapeutic strategies to decrease the incidence and severity of NEC have been developed to date. Stem cell therapy has been explored and even applied in various diseases, including gastrointestinal disorders. Animal studies on stem cell therapy have made great progress, and the anti-inflammatory, anti-apoptotic, and intestinal barrier enhancing effects of stem cells may be protective against NEC clinically. In this review, we discuss the therapeutic mechanisms through which stem cells may function in the treatment of NEC.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Si-Yuan Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|