1
|
Gierasch LM. From Rat Tails to Glycoproteostasis: Motivated by Biology, Enabled by Biophysics, and Lucky. J Mol Biol 2025; 437:169055. [PMID: 40024434 PMCID: PMC12021567 DOI: 10.1016/j.jmb.2025.169055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
In this article I tell the story of my career path and how I have come to focus my research on protein folding in the cell. My early fascination with protein folding began during my undergraduate research. My graduate work exploited reductionist approaches to explore structural features in proteins by using cyclic peptide models ofβ-turns. My career trajectory from these early days to present, described in the first section of this article, illustrates the importance of pursuing the scientific questions that one finds most exciting and seizing professional opportunities that enable these questions to be tackled productively. In addition, this trajectory shows how serendipity can shape a career path. The second section describes the extraordinary scientific discoveries I have witnessed in protein folding during my career. Here I explain how I was drawn into the world of protein folding in thecell. This turning point allowed me to participate in the explosion of research on molecular chaperones in the early 90's and to help elucidate the nature of chaperone-substrate recognition, a problem I continue to focus on. Examples of our research contributions are presented in the third section, with a perspective on major challenges for the future offered in the last section. Throughout my career I have engaged in many collaborations;each has opened new scientific doors. Importantly, I seek to instill in my trainees the same excitement about research that I feel and to foster their growth as scientists and their discovery of their own passions and talents.
Collapse
Affiliation(s)
- Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
3
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
4
|
Khakestani N, Latifi M, Babaeian E, Knee W, Hosseini S. Structure and molecular evolution of the barcode fragment of cytochrome oxidase I (COI) in Macrocheles (Acari: Mesostigmata: Macrochelidae). Ecol Evol 2022; 12:e9553. [PMID: 36514552 PMCID: PMC9731855 DOI: 10.1002/ece3.9553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Consisting of approximately 320 species, Macrocheles is the most widely distributed genus in the family Macrochelidae. Though some studies have focused on the description of Macrochelidae using molecular techniques (e.g., RAPD) and sequencing of some genes, the interspecies relationships within Macrocheles still remain uncertain. As such, in the present study, we examine all publicly available data in GenBank to explore the evolutionary relationships, divergence times, and amino acid variations within Macrocheles. Exploring the patterns of variation in the secondary protein structure shows high levels of conservation in the second and last helices, emphasizing their involvement in the energy metabolism function of the cytochrome oxidase subunit I enzyme. According to our phylogenetic analysis, all available Macrocheles species are clustered in a monophyletic group. However, in the reconstructed trees, we subdivided M. merdarius and M. willowae into two well-supported intraspecific clades that are driven by geographic separation and host specificity. We also estimate the divergence time of selected species using calibration evidence from available fossils and previous studies. Thus, we estimate that the age of the Parasitiformes is 320.4 (273.3-384.3) Mya (Permian), and the Mesostigmata is 285.1 (270.8-286.4) Mya (Carboniferous), both with likely origins in the Paleozoic era. We also estimate that Macrocheles diverged from other Mesostigmata mites during the Mesozoic, approximately 222.9 Mya.
Collapse
Affiliation(s)
- Najme Khakestani
- Department of Plant Protection, Faculty of AgricultureVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Malihe Latifi
- Department of Plant Protection, Faculty of AgricultureVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Esmaeil Babaeian
- Centre for Biodiversity GenomicsUniversity of GuelphGuelphCanada
| | - Wayne Knee
- Canadian National Collection of Insects, Arachnids, and Nematodes, Agriculture and Agri‐Food CanadaOttawaOntarioCanada
| | - Samin Hosseini
- Department of Plant Protection, Faculty of AgricultureVali‐e‐Asr University of RafsanjanRafsanjanIran
| |
Collapse
|
5
|
Abstract
Human health depends on the correct folding of proteins, for misfolding and aggregation lead to diseases. An unfolded (denatured) protein can refold to its original folded state. How does this occur is known as the protein folding problem. One of several related questions to this problem is that how much more stable is the folded state than the unfolded state. There are several measures of protein stability. In this article, protein stability is given a thermodynamic definition and is measured by Gibbs free energy change ( Δ G D 0 ) associated with the equilibrium, native (N) conformation ↔ denatured (D) conformation under the physiological condition usually taken as dilute buffer (or water) at 25 °C. We show that this thermodynamic quantity ( Δ G D 0 ), where subscript D represents transition between N and D states, and superscript 0 (zero) represents the fact that the transition occurs in the absence of denaturant, can be neither measured nor predicted under physiological conditions. However, Δ G D can be measured in the presence of strong chemical denaturants such as guanidinium chloride and urea which are shown to destroy all noncovalent interactions responsible for maintaining the folded structure. A problem with this measurement is that the estimate of Δ G D 0 comes from the analysis of the plot of Δ G D versus denaturant concentration, which requires a long extrapolation of values of Δ G D , and all the three methods of extrapolation give three different values of Δ G D 0 for a protein. Thus, our confidence in the authentic value of Δ G D 0 is eroded. Another problem with this in vitro measurement of Δ G D 0 is that it is done on the pure protein sample in dilute buffer which is a very large extrapolation of the in vivo conditions, for the crowding effect on protein stability is ignored.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Biochemistry, SCLS, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
On the Effects of Disordered Tails, Supertertiary Structure and Quinary Interactions on the Folding and Function of Protein Domains. Biomolecules 2022; 12:biom12020209. [PMID: 35204709 PMCID: PMC8961636 DOI: 10.3390/biom12020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
The vast majority of our current knowledge about the biochemical and biophysical properties of proteins derives from in vitro studies conducted on isolated globular domains. However, a very large fraction of the proteins expressed in the eukaryotic cell are structurally more complex. In particular, the discovery that up to 40% of the eukaryotic proteins are intrinsically disordered, or possess intrinsically disordered regions, and are highly dynamic entities lacking a well-defined three-dimensional structure, revolutionized the structure–function paradigm and our understanding of proteins. Moreover, proteins are mostly characterized by the presence of multiple domains, influencing each other by intramolecular interactions. Furthermore, proteins exert their function in a crowded intracellular milieu, transiently interacting with a myriad of other macromolecules. In this review we summarize the literature tackling these themes from both the theoretical and experimental perspectives, highlighting the effects on protein folding and function that are played by (i) flanking disordered tails; (ii) contiguous protein domains; (iii) interactions with the cellular environment, defined as quinary structures. We show that, in many cases, both the folding and function of protein domains is remarkably perturbed by the presence of these interactions, pinpointing the importance to increase the level of complexity of the experimental work and to extend the efforts to characterize protein domains in more complex contexts.
Collapse
|
7
|
Co NT, Li MS, Krupa P. Computational Models for the Study of Protein Aggregation. Methods Mol Biol 2022; 2340:51-78. [PMID: 35167070 DOI: 10.1007/978-1-0716-1546-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation has been studied by many groups around the world for many years because it can be the cause of a number of neurodegenerative diseases that have no effective treatment. Obtaining the structure of related fibrils and toxic oligomers, as well as describing the pathways and main factors that govern the self-organization process, is of paramount importance, but it is also very difficult. To solve this problem, experimental and computational methods are often combined to get the most out of each method. The effectiveness of the computational approach largely depends on the construction of a reasonable molecular model. Here we discussed different versions of the four most popular all-atom force fields AMBER, CHARMM, GROMOS, and OPLS, which have been developed for folded and intrinsically disordered proteins, or both. Continuous and discrete coarse-grained models, which were mainly used to study the kinetics of aggregation, are also summarized.
Collapse
Affiliation(s)
- Nguyen Truong Co
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
8
|
Politou AS, Pastore A, Temussi PA. An "Onion-like" Model of Protein Unfolding: Collective versus Site Specific Approaches. Chemphyschem 2021; 23:e202100520. [PMID: 34549492 DOI: 10.1002/cphc.202100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Approximating protein unfolding by an all-or-none cooperative event is a convenient assumption that can provide precious global information on protein stability. It is however quickly emerging that the scenario is far more complex and that global denaturation curves often hide a rich heterogeneity of states that are largely probe dependent. In this review, we revisit the importance of gaining site-specific information on the unfolding process. We focus on nuclear magnetic resonance, as this is the main technique able to provide site-specific information. We review historical and most modern approaches that have allowed an appreciable advancement of the field of protein folding. We also demonstrate how unfolding is a reporter dependent event, suggesting the outmost importance of selecting the reporter carefully.
Collapse
Affiliation(s)
- Anastasia S Politou
- Faculty of Medicine, University of Ioannina.,Institute of Molecular Biology and Biotechnology-FORTH, Ioannina, Greece
| | - Annalisa Pastore
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| |
Collapse
|
9
|
Katava M, Stirnemann G, Pachetti M, Capaccioli S, Paciaroni A, Sterpone F. Specific Interactions and Environment Flexibility Tune Protein Stability under Extreme Crowding. J Phys Chem B 2021; 125:6103-6111. [PMID: 34100611 DOI: 10.1021/acs.jpcb.1c01511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Macromolecular crowding influences protein mobility and stability in vivo. A precise description of the crowding effect on protein thermal stability requires the estimate of the combined effects of excluded volume, specific protein-environment interactions, as well as the thermal response of the crowders. Here, we explore an ideal model system, the lysozyme protein in powder state, to dissect the factors controlling the melting of the protein under extreme crowding. By deploying state-of-the art molecular simulations, supported by calorimetric experiments, we assess the role of the environment flexibility and of intermolecular electrostatic interactions. In particular, we show that the temperature-dependent flexibility of the macromolecular crowders, along with specific interactions, significantly alleviates the stabilizing contributions of the static volume effect.
Collapse
Affiliation(s)
- Marina Katava
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Maria Pachetti
- Elettra-Sincrotrone Trieste, S.S. 14 km 163.5, Area Science Park, 34149 Trieste, Italy.,Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Simone Capaccioli
- Dipartimento di Fisica, Universitá di Pisa, largo Pontecorvo 3, 56127 Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, I-56127 Pisa, Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Universitá di Perugia, via A. Pascoli, 06123 Perugia, Italy
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
10
|
Hasanbasri Z, Singewald K, Gluth TD, Driesschaert B, Saxena S. Cleavage-Resistant Protein Labeling With Hydrophilic Trityl Enables Distance Measurements In-Cell. J Phys Chem B 2021; 125:5265-5274. [PMID: 33983738 DOI: 10.1021/acs.jpcb.1c02371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitive in-cell distance measurements in proteins using pulsed-electron spin resonance (ESR) require reduction-resistant and cleavage-resistant spin labels. Among the reduction-resistant moieties, the hydrophilic trityl core known as OX063 is promising due to its long phase-memory relaxation time (Tm). This property leads to a sufficiently intense ESR signal for reliable distance measurements. Furthermore, the Tm of OX063 remains sufficiently long at higher temperatures, opening the possibility for measurements at temperatures above 50 K. In this work, we synthesized deuterated OX063 with a maleimide linker (mOX063-d24). We show that the combination of the hydrophilicity of the label and the maleimide linker enables high protein labeling that is cleavage-resistant in-cells. Distance measurements performed at 150 K using this label are more sensitive than the measurements at 80 K. The sensitivity gain is due to the significantly short longitudinal relaxation time (T1) at higher temperatures, which enables more data collection per unit of time. In addition to in vitro experiments, we perform distance measurements in Xenopus laevis oocytes. Interestingly, the Tm of mOX063-d24 is sufficiently long even in the crowded environment of the cell, leading to signals of appreciable intensity. Overall, mOX063-d24 provides highly sensitive distance measurements both in vitro and in-cells.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Sörensen T, Leeb S, Danielsson J, Oliveberg M. Polyanions Cause Protein Destabilization Similar to That in Live Cells. Biochemistry 2021; 60:735-746. [PMID: 33635054 PMCID: PMC8028048 DOI: 10.1021/acs.biochem.0c00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Indexed: 12/25/2022]
Abstract
The structural stability of proteins is found to markedly change upon their transfer to the crowded interior of live cells. For some proteins, the stability increases, while for others, it decreases, depending on both the sequence composition and the type of host cell. The mechanism seems to be linked to the strength and conformational bias of the diffusive in-cell interactions, where protein charge is found to play a decisive role. Because most proteins, nucleotides, and membranes carry a net-negative charge, the intracellular environment behaves like a polyanionic (Z:1) system with electrostatic interactions different from those of standard 1:1 ion solutes. To determine how such polyanion conditions influence protein stability, we use negatively charged polyacetate ions to mimic the net-negatively charged cellular environment. The results show that, per Na+ equivalent, polyacetate destabilizes the model protein SOD1barrel significantly more than monoacetate or NaCl. At an equivalent of 100 mM Na+, the polyacetate destabilization of SOD1barrel is similar to that observed in live cells. By the combined use of equilibrium thermal denaturation, folding kinetics, and high-resolution nuclear magnetic resonance, this destabilization is primarily assigned to preferential interaction between polyacetate and the globally unfolded protein. This interaction is relatively weak and involves mainly the outermost N-terminal region of unfolded SOD1barrel. Our findings point thus to a generic influence of polyanions on protein stability, which adds to the sequence-specific contributions and needs to be considered in the evaluation of in vivo data.
Collapse
Affiliation(s)
- Therese Sörensen
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sarah Leeb
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Subadini S, Bera K, Hritz J, Sahoo H. Polyethylene glycol perturbs the unfolding of CRABP I: A correlation between experimental and theoretical approach. Colloids Surf B Biointerfaces 2021; 202:111696. [PMID: 33770701 DOI: 10.1016/j.colsurfb.2021.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
The importance of macromolecules paves the way towards a detailed molecular level investigation as all most all cellular processes occurring at the interior of cells in the form of proteins, enzymes, and other biological molecules are significantly affected because of their crowding. Thus, exploring the role of crowding environment on the denaturation and renaturation kinetics of protein molecules is of great importance. Here, CRABP I (cellular retinoic acid binding protein I) is employed as a model protein along with different molecular weights of Polyethylene glycol (PEG) as molecular crowders. The experimental evaluations are done by accessing the protein secondary structure analysis using circular dichroism (CD) spectroscopy and unfolding kinetics using intrinsic fluorescence of CRABP I at 37 °C to mimic the in vivo crowding environment. The unfolding kinetics results indicated that both PEG 2000 and PEG 4000 act as stabilizers by retarding the unfolding kinetic rates. Both kinetic and stability outcomes presented the importance of crowding environment on stability and kinetics of CRABP I. The molecular dynamics (MD) studies revealed that thirteen PEG 2000 molecules assembled during the 500 ns simulation, which increases the stability and percentage of β-sheet. The experimental findings are well supported by the molecular dynamics simulation results.
Collapse
Affiliation(s)
- Suchismita Subadini
- Biophysical and Protein Chemistry Lab, Department of Chemistry, NIT Rourkela, Rourkela, 769008, India
| | - Krishnendu Bera
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jozef Hritz
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, NIT Rourkela, Rourkela, 769008, India; Center of Nanomaterials, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
13
|
Welte H, Kovermann M. Insights into Protein Stability in Cell Lysate by 19 F NMR Spectroscopy. Chembiochem 2020; 21:3575-3579. [PMID: 32786103 PMCID: PMC7756264 DOI: 10.1002/cbic.202000413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Indexed: 02/03/2023]
Abstract
In living organisms, protein folding and function take place in an inhomogeneous, highly crowded environment possessing a concentration of diverse macromolecules of up to 400 g/L. It has been shown that the intracellular environment has a pronounced effect on the stability, dynamics and function of the protein under study, and has for this reason to be considered. However, most protein studies neglect the presence of these macromolecules. Consequently, we probe here the overall thermodynamic stability of cold shock protein B from Bacillus subtilis (BsCspB) in cell lysate. We found that an increase in cell lysate concentration causes a monotonic increase in the thermodynamic stability of BsCspB. This result strongly underlines the importance of considering the biological environment when inherent protein parameters are quantitatively determined. Moreover, we demonstrate that targeted application of 19 F NMR spectroscopy operates as an ideal tool for protein studies performed in complex cellular surroundings.
Collapse
Affiliation(s)
- Hannah Welte
- Department of ChemistryUniversity KonstanzResearch School Chemical Biology (KoRS-CB)Universitätsstrasse 1078457KonstanzGermany
| | - Michael Kovermann
- Department of ChemistryUniversity KonstanzResearch School Chemical Biology (KoRS-CB)Universitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
14
|
Abstract
Cells of the vast majority of organisms are subject to temperature, pressure, pH, ionic strength, and other stresses. We discuss these effects in the light of protein folding and protein interactions in vitro, in complex environments, in cells, and in vivo. Protein phase diagrams provide a way of organizing different structural ensembles that occur under stress and how one can move among ensembles. Experiments that perturb biomolecules in vitro or in cells by stressing them have revealed much about the underlying forces that are competing to control protein stability, folding, and function. Two phenomena that emerge and serve to broadly classify effects of the cellular environment are crowding (mainly due to repulsive forces) and sticking (mainly due to attractive forces). The interior of cells is closely balanced between these emergent effects, and stress can tip the balance one way or the other. The free energy scale involved is small but significant on the scale of the "on/off switches" that control signaling in cells or of protein-protein association with a favorable function such as increased enzyme processivity. Quantitative tools from biophysical chemistry will play an important role in elucidating the world of crowding and sticking under stress.
Collapse
Affiliation(s)
- Mayank Boob
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
- Department of Chemistry, Department of Physics, Center for the Physics of Living Cells, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| |
Collapse
|
15
|
Abstract
Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network-type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Piszkiewicz S, Gunn KH, Warmuth O, Propst A, Mehta A, Nguyen KH, Kuhlman E, Guseman AJ, Stadmiller SS, Boothby TC, Neher SB, Pielak GJ. Protecting activity of desiccated enzymes. Protein Sci 2019; 28:941-951. [PMID: 30868674 DOI: 10.1002/pro.3604] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
Protein-based biological drugs and many industrial enzymes are unstable, making them prohibitively expensive. Some can be stabilized by formulation with excipients, but most still require low temperature storage. In search of new, more robust excipients, we turned to the tardigrade, a microscopic animal that synthesizes cytosolic abundant heat soluble (CAHS) proteins to protect its cellular components during desiccation. We find that CAHS proteins protect the test enzymes lactate dehydrogenase and lipoprotein lipase against desiccation-, freezing-, and lyophilization-induced deactivation. Our data also show that a variety of globular and disordered protein controls, with no known link to desiccation tolerance, protect our test enzymes. Protection of lactate dehydrogenase correlates, albeit imperfectly, with the charge density of the protein additive, suggesting an approach to tune protection by modifying charge. Our results support the potential use of CAHS proteins as stabilizing excipients in formulations and suggest that other proteins may have similar potential.
Collapse
Affiliation(s)
- Samantha Piszkiewicz
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kathryn H Gunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Owen Warmuth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Ashlee Propst
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Aakash Mehta
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kenny H Nguyen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Elizabeth Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Alex J Guseman
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Samantha S Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Thomas C Boothby
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
17
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
18
|
Cheng K, Wu Q, Zhang Z, Pielak GJ, Liu M, Li C. Crowding and Confinement Can Oppositely Affect Protein Stability. Chemphyschem 2018; 19:3350-3355. [DOI: 10.1002/cphc.201800857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Gary J. Pielak
- Department of Chemistry Department of Biochemistry and Biophysics University of North Carolina, Chapel Hill Chapel Hill, NC 27599-3290 USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| |
Collapse
|
19
|
Zheng S, Shing KS, Sahimi M. Dynamics of proteins aggregation. II. Dynamic scaling in confined media. J Chem Phys 2018; 148:104305. [PMID: 29544316 DOI: 10.1063/1.5008543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this paper, the second in a series devoted to molecular modeling of protein aggregation, a mesoscale model of proteins together with extensive discontinuous molecular dynamics simulation is used to study the phenomenon in a confined medium. The medium, as a model of a crowded cellular environment, is represented by a spherical cavity, as well as cylindrical tubes with two aspect ratios. The aggregation process leads to the formation of β sheets and eventually fibrils, whose deposition on biological tissues is believed to be a major factor contributing to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis diseases. Several important properties of the aggregation process, including dynamic evolution of the total number of the aggregates, the mean aggregate size, and the number of peptides that contribute to the formation of the β sheets, have been computed. We show, similar to the unconfined media studied in Paper I [S. Zheng et al., J. Chem. Phys. 145, 134306 (2016)], that the computed properties follow dynamic scaling, characterized by power laws. The existence of such dynamic scaling in unconfined media was recently confirmed by experiments. The exponents that characterize the power-law dependence on time of the properties of the aggregation process in spherical cavities are shown to agree with those in unbounded fluids at the same protein density, while the exponents for aggregation in the cylindrical tubes exhibit sensitivity to the geometry of the system. The effects of the number of amino acids in the protein, as well as the size of the confined media, have also been studied. Similarities and differences between aggregation in confined and unconfined media are described, including the possibility of no fibril formation, if confinement is severe.
Collapse
Affiliation(s)
- Size Zheng
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | - Katherine S Shing
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
20
|
Li S, Ye S, Liu G. Specific Ion Effects on Protein Thermal Aggregation from Dilute Solutions to Crowded Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4289-4297. [PMID: 29566333 DOI: 10.1021/acs.langmuir.8b00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have investigated specific ion effects on protein thermal aggregation from dilute solutions to crowded environments. Ovalbumin and poly(ethylene glycol) have been employed as the model protein and crowding agent, respectively. Our studies demonstrate that the rate-limiting step of ovalbumin thermal aggregation is changed from the aggregation of unfolded protein molecules to the unfolding of the protein molecules, when the solution conditions are varied from a dilute solution to a crowded environment. The specific ion effects acting on the thermal aggregation of ovalbumin generated by kosmotropic and chaotropic ions are different. The thermal aggregation of ovalbumin molecules is promoted by kosmotropic anions in dilute solutions via an increase in protein hydrophobic interactions. In contrast, ovalbumin thermal aggregation is facilitated by chaotropic ions in crowded environments through accelerated unfolding of protein molecules. Therefore, there are distinct mechanisms causing the ion specificities of protein thermal aggregation between dilute solutions and crowded environments. The ion specificities are dominated by ion-specific hydrophobic interactions between protein molecules and ion-specific unfolding of protein molecules in dilute solutions and crowded environments, respectively.
Collapse
Affiliation(s)
- Shuling Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| |
Collapse
|
21
|
Sachsenhauser V, Bardwell JC. Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol 2018; 48:117-123. [PMID: 29278775 PMCID: PMC5880552 DOI: 10.1016/j.sbi.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Recently, several innovative approaches have been developed that allow one to directly screen or select for improved protein folding in the cellular context. These methods have the potential of not just leading to a better understanding of the in vivo folding process, they may also allow for improved production of proteins of biotechnological interest.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
23
|
Knies JL, Cai F, Weinreich DM. Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase. Mol Biol Evol 2017; 34:1040-1054. [PMID: 28087769 PMCID: PMC5400381 DOI: 10.1093/molbev/msx053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation. Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes' contributions to organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This observation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 β-lactamase that jointly increase cefotaxime Minimum Inhibitory Concentration (MIC) ∼1500-fold. First, we report enzymatic efficiency (kcat/KM) and thermostability (Tm, and thence ΔG of folding) for all combinations of these mutations. Next, we fit a quantitative model that predicts MIC as a function of kcat/KM and ΔG. While kcat/KM explains ∼54% of the variance in cefotaxime MIC (∼92% after log transformation), ΔG does not improve explanatory power of the model. We also find that cefotaxime MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively "well-behaved" system.
Collapse
Affiliation(s)
- Jennifer L Knies
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Fei Cai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| |
Collapse
|
24
|
Piras L, Avitabile C, D'Andrea LD, Saviano M, Romanelli A. Detection of oligonucleotides by PNA-peptide conjugates recognizing the biarsenical fluorescein complex FlAsH-EDT 2. Biochem Biophys Res Commun 2017; 493:126-131. [PMID: 28919425 DOI: 10.1016/j.bbrc.2017.09.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
We report the application of the arsenical complex FlAsH-EDT2 for the identification of oligonucleotide sequences. We designed PNA sequences conjugated to either a tetracysteine motif and to split tetracysteine sequences, that are recognized by FlAsH. The effect of conjugation of the PNA to the tetracysteine peptide and RNA hybridization on the fluorescence of the arsenical complex has been investigated. The reconstitution of the tetracysteine motif, starting from 15-mer PNAs conjugated to split tetracysteine sequences and hybridized to a complementary oligonucleotide was also explored.
Collapse
Affiliation(s)
- Linda Piras
- Institute of Crystallography (IC), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Napoli, Italy
| | - Luca Domenico D'Andrea
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Napoli, Italy
| | - Michele Saviano
- Institute of Crystallography (IC), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Alessandra Romanelli
- Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134, Napoli, Italy.
| |
Collapse
|
25
|
Feig M, Yu I, Wang PH, Nawrocki G, Sugita Y. Crowding in Cellular Environments at an Atomistic Level from Computer Simulations. J Phys Chem B 2017; 121:8009-8025. [PMID: 28666087 PMCID: PMC5582368 DOI: 10.1021/acs.jpcb.7b03570] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The
effects of crowding in biological environments on biomolecular
structure, dynamics, and function remain not well understood. Computer
simulations of atomistic models of concentrated peptide and protein
systems at different levels of complexity are beginning to provide
new insights. Crowding, weak interactions with other macromolecules
and metabolites, and altered solvent properties within cellular environments
appear to remodel the energy landscape of peptides and proteins in
significant ways including the possibility of native state destabilization.
Crowding is also seen to affect dynamic properties, both conformational
dynamics and diffusional properties of macromolecules. Recent simulations
that address these questions are reviewed here and discussed in the
context of relevant experiments.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States.,Quantitative Biology Center, RIKEN , Kobe, Japan
| | - Isseki Yu
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan
| | - Po-Hung Wang
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan
| | - Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States
| | - Yuji Sugita
- Quantitative Biology Center, RIKEN , Kobe, Japan.,Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan.,Advanced Institute for Computational Science, RIKEN , Kobe, Japan
| |
Collapse
|
26
|
Physicochemical code for quinary protein interactions in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:E4556-E4563. [PMID: 28536196 DOI: 10.1073/pnas.1621227114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the Escherichia coli cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical-chemical rules: The proteins reveal a common dependence on (i) net charge density, (ii) surface hydrophobicity, and (iii) the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein's behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics.
Collapse
|
27
|
Stadmiller SS, Gorensek-Benitez AH, Guseman AJ, Pielak GJ. Osmotic Shock Induced Protein Destabilization in Living Cells and Its Reversal by Glycine Betaine. J Mol Biol 2017; 429:1155-1161. [PMID: 28263768 PMCID: PMC5985519 DOI: 10.1016/j.jmb.2017.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022]
Abstract
Many organisms can adapt to changes in the solute content of their surroundings (i.e., the osmolarity). Hyperosmotic shock causes water efflux and a concomitant reduction in cell volume, which is countered by the accumulation of osmolytes. This volume reduction increases the crowded nature of the cytoplasm, which is expected to affect protein stability. In contrast to traditional theory, which predicts that more crowded conditions can only increase protein stability, recent work shows that crowding can destabilize proteins through transient attractive interactions. Here, we quantify protein stability in living Escherichia coli cells before and after hyperosmotic shock in the presence and absence of the osmolyte, glycine betaine. The 7-kDa N-terminal src-homology 3 domain of Drosophila signal transduction protein drk is used as the test protein. We find that hyperosmotic shock decreases SH3 stability in cells, consistent with the idea that transient attractive interactions are important under physiologically relevant crowded conditions. The subsequent uptake of glycine betaine returns SH3 to the stability observed without osmotic shock. These results highlight the effect of transient attractive interactions on protein stability in cells and provide a new explanation for why stressed cells accumulate osmolytes.
Collapse
Affiliation(s)
- Samantha S Stadmiller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | - Alex J Guseman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, USA.
| |
Collapse
|
28
|
Towards understanding cellular structure biology: In-cell NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:547-557. [PMID: 28257994 DOI: 10.1016/j.bbapap.2017.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
To watch biological macromolecules perform their functions inside the living cells is the dream of any biologists. In-cell nuclear magnetic resonance is a branch of biomolecular NMR spectroscopy that can be used to observe the structures, interactions and dynamics of these molecules in the living cells at atomic level. In principle, in-cell NMR can be applied to different cellular systems to achieve biologically relevant structural and functional information. In this review, we summarize the existing approaches in this field and discuss its applications in protein interactions, folding, stability and post-translational modifications. We hope this review will emphasize the effectiveness of in-cell NMR for studies of intricate biological processes and for structural analysis in cellular environments.
Collapse
|
29
|
Danielsson J, Oliveberg M. Comparing protein behaviour in vitro and in vivo , what does the data really tell us? Curr Opin Struct Biol 2017; 42:129-135. [DOI: 10.1016/j.sbi.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
30
|
Hoppe T, Minton AP. Incorporation of Hard and Soft Protein-Protein Interactions into Models for Crowding Effects in Binary and Ternary Protein Mixtures. Comparison of Approximate Analytical Solutions with Numerical Simulation. J Phys Chem B 2016; 120:11866-11872. [PMID: 27779417 DOI: 10.1021/acs.jpcb.6b07736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to better understand how nonspecific interactions between solutes can modulate specific biochemical reactions taking place in complex media, we introduce a simplified model aimed at elucidating general principles. In this model, solutions containing two or three species of interacting globular proteins are modeled as a fluid of spherical particles interacting through square well potentials that qualitatively capture both steric hard core repulsion and longer-ranged attraction or repulsion. The excess chemical potential, or free energy of solvation, of each particle species is calculated as a function of species concentrations, particle radii, and square well interaction range and depth. The results of analytical models incorporating two-body and three-body interactions are compared with the estimates of free energy obtained via Widom insertion into simulated equilibrium square-well fluids. The analytical models agree well with results of numeric simulations carried out for a variety of model parameters and fluid compositions up to a total particle volume fraction of ca. 0.2.
Collapse
Affiliation(s)
- Travis Hoppe
- Laboratory of Chemical Physics and ‡Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States Public Health Service , Bethesda, Maryland 20892, United States
| | - Allen P Minton
- Laboratory of Chemical Physics and ‡Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States Public Health Service , Bethesda, Maryland 20892, United States
| |
Collapse
|
31
|
Rivas G, Minton AP. Macromolecular Crowding In Vitro, In Vivo, and In Between. Trends Biochem Sci 2016; 41:970-981. [PMID: 27669651 DOI: 10.1016/j.tibs.2016.08.013] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Biochemical processes take place in heterogeneous and highly volume-occupied or crowded environments that can considerably influence the reactivity and distribution of participating macromolecules. We summarize here the thermodynamic consequences of excluded-volume and long-range nonspecific intermolecular interactions for macromolecular reactions in volume-occupied media. In addition, we summarize and compare the information content of studies of crowding in vitro and in vivo. We emphasize the importance of characterizing the behavior not only of labeled tracer macromolecules but also the composition and behavior of unlabeled macromolecules in the immediate vicinity of the tracer. Finally, we propose strategies for extending quantitative analyses of crowding in simple model systems to increasingly complex media up to and including intact cells.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Gnutt D, Ebbinghaus S. The macromolecular crowding effect--from in vitro into the cell. Biol Chem 2016; 397:37-44. [PMID: 26351910 DOI: 10.1515/hsz-2015-0161] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/13/2015] [Indexed: 01/18/2023]
Abstract
The influence of the cellular milieu, a complex and crowded solvent, is often neglected when biomolecular structure and function are studied in vitro. To mimic the cellular environment, crowding effects are commonly induced in vitro using artificial crowding agents like Ficoll or dextran. However, it is unclear if such effects are also observed in cellulo. Diverging results on protein stability in living cells point out the need for new quantitative methods to investigate the contributions of excluded volume and nonspecific interactions to the cellular crowding effect. We show how new crowding sensitive probes may be utilized to directly investigate crowding effects in living cells. Moreover, we discuss processes where crowding effects could play a crucial role in molecular cell biology.
Collapse
|
33
|
Fonin AV, Uversky VN, Kuznetsova IM, Turoverov KK. Protein folding and stability in the presence of osmolytes. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916020056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Tai J, Dave K, Hahn V, Guzman I, Gruebele M. Subcellular modulation of protein VlsE stability and folding kinetics. FEBS Lett 2016; 590:1409-16. [PMID: 27129718 DOI: 10.1002/1873-3468.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 01/29/2023]
Abstract
The interior of a cell interacts differently with proteins than a dilute buffer because of a wide variety of macromolecules, chaperones, and osmolytes that crowd and interact with polypeptide chains. We compare folding of fluorescent constructs of protein VlsE among three environments inside cells. The nucleus increases the stability of VlsE relative to the cytoplasm, but slows down folding kinetics. VlsE is also more stable in the endoplasmic reticulum, but unlike PGK, tends to aggregate there. Although fluorescent-tagged VlsE and PGK show opposite stability trends from in vitro to the cytoplasm, their trends from cytoplasm to nucleus are similar.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Kapil Dave
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL, USA
| | - Vincent Hahn
- Karlsruher Institut für Technologie, Institut für Angewandte Physik, Karlsruhe, Germany
| | | | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL, USA.,Departments of Chemistry and Physics, University of Illinois, Urbana, IL, USA
| |
Collapse
|
35
|
Bille A, Mohanty S, Irbäck A. Peptide folding in the presence of interacting protein crowders. J Chem Phys 2016; 144:175105. [PMID: 27155657 DOI: 10.1063/1.4948462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the β-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.
Collapse
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
36
|
Dave K, Gelman H, Thu CTH, Guin D, Gruebele M. The Effect of Fluorescent Protein Tags on Phosphoglycerate Kinase Stability Is Nonadditive. J Phys Chem B 2016; 120:2878-85. [PMID: 26923443 DOI: 10.1021/acs.jpcb.5b11915] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is frequently assumed that fluorescent protein tags used in biological imaging experiments are minimally perturbing to their host protein. As in-cell experiments become more quantitative and measure rates and equilibrium constants, rather than just "on-off" activity or the presence of a protein, it becomes more important to understand such perturbations. One criterion for a protein modification to be a perturbation is additivity of two perturbations (a linear effect on the protein free energy). Here we show that adding fluorescent protein tags to a host protein in vitro has a large nonadditive effect on its folding free energy. We compare an unlabeled, three singly labeled, and a doubly labeled enzyme (phosphoglycerate kinase). We propose two mechanisms for nonadditivity. In the "quinary interaction" mechanism, two tags interact transiently with one another, relieving the host protein from unfavorable tag-protein interactions. In the "crowding" mechanism, adding two tags provides the minimal crowding necessary to overcome destabilizing interactions of individual tags with the host protein. Both of these mechanisms affect protein stability in cells; we show here that they must also be considered for tagged proteins used for reference in vitro.
Collapse
Affiliation(s)
| | | | - Chu Thi Hien Thu
- Department of Chemistry, Hanoi University of Science, Vietnam National University , Hanoi, Vietnam
| | | | - Martin Gruebele
- Department of Chemistry, Hanoi University of Science, Vietnam National University , Hanoi, Vietnam
| |
Collapse
|
37
|
Macdonald B, McCarley S, Noeen S, van Giessen AE. β-Hairpin Crowding Agents Affect α-Helix Stability in Crowded Environments. J Phys Chem B 2016; 120:650-9. [DOI: 10.1021/acs.jpcb.5b10575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bryanne Macdonald
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Shannon McCarley
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Sundus Noeen
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Alan E. van Giessen
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| |
Collapse
|
38
|
Abstract
There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.
Collapse
|
39
|
Bille A, Linse B, Mohanty S, Irbäck A. Equilibrium simulation of trp-cage in the presence of protein crowders. J Chem Phys 2015; 143:175102. [DOI: 10.1063/1.4934997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Björn Linse
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
40
|
Groen J, Foschepoth D, te Brinke E, Boersma AJ, Imamura H, Rivas G, Heus HA, Huck WTS. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects. J Am Chem Soc 2015; 137:13041-8. [PMID: 26383885 DOI: 10.1021/jacs.5b07898] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.
Collapse
Affiliation(s)
- Joost Groen
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| | - David Foschepoth
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| | - Esra te Brinke
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| | - Arnold J Boersma
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , 9747 AG Groningen, The Netherlands
| | - Hiromi Imamura
- Graduate School of Biostudies & The Hakubi Center for Advanced Research, Kyoto University , 606-8501 Kyoto, Japan
| | - Germán Rivas
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu 9, E-40 28040 Madrid, Spain
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Abstract
Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.
Collapse
|
42
|
Mittal S, Chowhan RK, Singh LR. Macromolecular crowding: Macromolecules friend or foe. Biochim Biophys Acta Gen Subj 2015; 1850:1822-31. [DOI: 10.1016/j.bbagen.2015.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022]
|
43
|
Meini MR, Tomatis PE, Weinreich DM, Vila AJ. Quantitative Description of a Protein Fitness Landscape Based on Molecular Features. Mol Biol Evol 2015; 32:1774-87. [PMID: 25767204 DOI: 10.1093/molbev/msv059] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Understanding the driving forces behind protein evolution requires the ability to correlate the molecular impact of mutations with organismal fitness. To address this issue, we employ here metallo-β-lactamases as a model system, which are Zn(II) dependent enzymes that mediate antibiotic resistance. We present a study of all the possible evolutionary pathways leading to a metallo-β-lactamase variant optimized by directed evolution. By studying the activity, stability and Zn(II) binding capabilities of all mutants in the preferred evolutionary pathways, we show that this local fitness landscape is strongly conditioned by epistatic interactions arising from the pleiotropic effect of mutations in the different molecular features of the enzyme. Activity and stability assays in purified enzymes do not provide explanatory power. Instead, measurement of these molecular features in an environment resembling the native one provides an accurate description of the observed antibiotic resistance profile. We report that optimization of Zn(II) binding abilities of metallo-β-lactamases during evolution is more critical than stabilization of the protein to enhance fitness. A global analysis of these parameters allows us to connect genotype with fitness based on quantitative biochemical and biophysical parameters.
Collapse
Affiliation(s)
- María-Rocío Meini
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Pablo E Tomatis
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, and Center for Computational Molecular Biology, Brown University
| | - Alejandro J Vila
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
44
|
Monteith WB, Cohen RD, Smith AE, Guzman-Cisneros E, Pielak GJ. Quinary structure modulates protein stability in cells. Proc Natl Acad Sci U S A 2015; 112:1739-42. [PMID: 25624496 PMCID: PMC4330749 DOI: 10.1073/pnas.1417415112] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein quinary interactions organize the cellular interior and its metabolism. Although the interactions stabilizing secondary, tertiary, and quaternary protein structure are well defined, details about the protein-matrix contacts that comprise quinary structure remain elusive. This gap exists because proteins function in the crowded cellular environment, but are traditionally studied in simple buffered solutions. We use NMR-detected H/D exchange to quantify quinary interactions between the B1 domain of protein G and the cytosol of Escherichia coli. We demonstrate that a surface mutation in this protein is 10-fold more destabilizing in cells than in buffer, a surprising result that firmly establishes the significance of quinary interactions. Remarkably, the energy involved in these interactions can be as large as the energies that stabilize specific protein complexes. These results will drive the critical task of implementing quinary structure into models for understanding the proteome.
Collapse
Affiliation(s)
| | | | | | | | - Gary J Pielak
- Departments of Chemistry and Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
45
|
Macdonald B, McCarley S, Noeen S, van Giessen AE. Protein–Protein Interactions Affect Alpha Helix Stability in Crowded Environments. J Phys Chem B 2015; 119:2956-67. [DOI: 10.1021/jp512630s] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bryanne Macdonald
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Shannon McCarley
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Sundus Noeen
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Alan E. van Giessen
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| |
Collapse
|
46
|
Correia AR, Naik S, Fisher MT, Gomes CM. Probing the kinetic stabilities of Friedreich's ataxia clinical variants using a solid phase GroEL chaperonin capture platform. Biomolecules 2014; 4:956-79. [PMID: 25333765 PMCID: PMC4279165 DOI: 10.3390/biom4040956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 08/29/2014] [Accepted: 09/19/2014] [Indexed: 11/17/2022] Open
Abstract
Numerous human diseases are caused by protein folding defects where the protein may become more susceptible to degradation or aggregation. Aberrant protein folding can affect the kinetic stability of the proteins even if these proteins appear to be soluble in vivo. Experimental discrimination between functional properly folded and misfolded nonfunctional conformers is not always straightforward at near physiological conditions. The differences in the kinetic behavior of two initially folded frataxin clinical variants were examined using a high affinity chaperonin kinetic trap approach at 25 °C. The kinetically stable wild type frataxin (FXN) shows no visible partitioning onto the chaperonin. In contrast, the clinical variants FXN-p.Asp122Tyr and FXN-p.Ile154Phe kinetically populate partial folded forms that tightly bind the GroEL chaperonin platform. The initially soluble FXN-p.Ile154Phe variant partitions onto GroEL more rapidly and is more kinetically liable. These differences in kinetic stability were confirmed using differential scanning fluorimetry. The kinetic and aggregation stability differences of these variants may lead to the distinct functional impairments described in Friedreich's ataxia, the neurodegenerative disease associated to frataxin functional deficiency. This chaperonin platform approach may be useful for identifying small molecule stabilizers since stabilizing ligands to frataxin variants should lead to a concomitant decrease in chaperonin binding.
Collapse
Affiliation(s)
- Ana R Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal.
| | - Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, Hemenway Life Sciences Innovation Center (HLSIC), University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, Hemenway Life Sciences Innovation Center (HLSIC), University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal.
| |
Collapse
|
47
|
Abstract
Here we describe biosensors that provide readouts for protein stability in the cytosolic compartment of prokaryotes. These biosensors consist of tripartite sandwich fusions that link the in vitro stability or aggregation susceptibility of guest proteins to the in vivo resistance of host cells to the antibiotics kanamycin, spectinomycin, and nourseothricin. These selectable markers confer antibiotic resistance in a wide range of hosts and are easily quantifiable. We show that mutations within guest proteins that affect their stability alter the antibiotic resistances of the cells expressing the biosensors in a manner that is related to the in vitro stabilities of the mutant guest proteins. In addition, we find that polyglutamine tracts of increasing length are associated with an increased tendency to form amyloids in vivo and, in our sandwich fusion system, with decreased resistance to aminoglycoside antibiotics. We demonstrate that our approach allows the in vivo analysis of protein stability in the cytosolic compartment without the need for prior structural and functional knowledge.
Collapse
|
48
|
Abstract
The intracellular milieu differs from the dilute conditions in which most biophysical and biochemical studies are performed. This difference has led both experimentalists and theoreticians to tackle the challenging task of understanding how the intracellular environment affects the properties of biopolymers. Despite a growing number of in-cell studies, there is a lack of quantitative, residue-level information about equilibrium thermodynamic protein stability under nonperturbing conditions. We report the use of NMR-detected hydrogen-deuterium exchange of quenched cell lysates to measure individual opening free energies of the 56-aa B1 domain of protein G (GB1) in living Escherichia coli cells without adding destabilizing cosolutes or heat. Comparisons to dilute solution data (pH 7.6 and 37 °C) show that opening free energies increase by as much as 1.14 ± 0.05 kcal/mol in cells. Importantly, we also show that homogeneous protein crowders destabilize GB1, highlighting the challenge of recreating the cellular interior. We discuss our findings in terms of hard-core excluded volume effects, charge-charge GB1-crowder interactions, and other factors. The quenched lysate method identifies the residues most important for folding GB1 in cells, and should prove useful for quantifying the stability of other globular proteins in cells to gain a more complete understanding of the effects of the intracellular environment on protein chemistry.
Collapse
|
49
|
Sarkar M, Pielak GJ. An osmolyte mitigates the destabilizing effect of protein crowding. Protein Sci 2014; 23:1161-4. [PMID: 24963990 DOI: 10.1002/pro.2510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 11/11/2022]
Abstract
Most theories predict that macromolecular crowding stabilizes globular proteins, but recent studies show that weak attractive interactions can result in crowding-induced destabilization. Osmolytes are ubiquitous in biology and help protect cells against stress. Given that dehydration stress adds to the crowded nature of the cytoplasm, we speculated that cells might use osmolytes to overcome the destabilization caused by the increased weak interactions that accompany desiccation. We used NMR-detected amide proton exchange experiments to measure the stability of the test protein chymotrypsin inhibitor 2 under physiologically relevant crowded conditions in the presence and absence of the osmolyte glycine betaine. The osmolyte overcame the destabilizing effect of the cytosol. This result provides a physiologically relevant explanation for the accumulation of osmolytes by dehydration-stressed cells.
Collapse
Affiliation(s)
- Mohona Sarkar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | | |
Collapse
|
50
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|