1
|
Martínez-Rodríguez S, Soriano-Maldonado P, Gavira JA. N-succinylamino acid racemases: Enzymatic properties and biotechnological applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140377. [PMID: 31982578 DOI: 10.1016/j.bbapap.2020.140377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/28/2023]
Abstract
The N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) subfamily from the enolase superfamily contains different enzymes showing promiscuous N-substituted-amino acid racemase (NxAR) activity. These enzymes were originally named as N-acylamino acid racemases because of their industrial application. Nonetheless, they are pivotal in several enzymatic cascades due to their versatility to catalyze a wide substrate spectrum, allowing the production of optically pure d- or l-amino acids from cheap precursors. These compounds are of paramount economic interest, since they are used as food additives, in the pharmaceutical and cosmetics industries and/or as chiral synthons in organic synthesis. Despite its economic importance, the discovery of new N-succinylamino acid racemases has become elusive, since classical sequence-based annotation methods proved ineffective in their identification, due to a high sequence similarity among the members of the enolase superfamily. During the last decade, deeper investigations into different members of the NSAR/OSBS subfamily have shed light on the classification and identification of NSAR enzymes with NxAR activity of biotechnological potential. This review aims to gather the dispersed information on NSAR/OSBS members showing NxAR activity over recent decades, focusing on their biotechnological applications and providing practical advice to identify new enzymes.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Facultad de Medicina, Granada 18071, Spain; Laboratorio de Estudios Cristalográficos, CSIC, 18100 Granada, Spain.
| | | | | |
Collapse
|
2
|
Botello-Morte L, Pellicer S, Sein-Echaluce VC, Contreras LM, Neira JL, Abián O, Velázquez-Campoy A, Peleato ML, Fillat MF, Bes MT. Cysteine Mutational Studies Provide Insight into a Thiol-Based Redox Switch Mechanism of Metal and DNA Binding in FurA from Anabaena sp. PCC 7120. Antioxid Redox Signal 2016; 24:173-185. [PMID: 26414804 PMCID: PMC4744886 DOI: 10.1089/ars.2014.6175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS The ferric uptake regulator (Fur) is the main transcriptional regulator of genes involved in iron homeostasis in most prokaryotes. FurA from Anabaena sp. PCC 7120 contains five cysteine residues, four of them arranged in two redox-active CXXC motifs. The protein needs not only metal but also reducing conditions to remain fully active in vitro. Through a mutational study of the cysteine residues present in FurA, we have investigated their involvement in metal and DNA binding. RESULTS Residue C101 that belongs to a conserved CXXC motif plays an essential role in both metal and DNA binding activities in vitro. Substitution of C101 by serine impairs DNA and metal binding abilities of FurA. Isothermal titration calorimetry measurements show that the redox state of C101 is responsible for the protein ability to coordinate the metal corepressor. Moreover, the redox state of C101 varies with the presence or absence of C104 or C133, suggesting that the environments of these cysteines are mutually interdependent. INNOVATION We propose that C101 is part of a thiol/disulfide redox switch that determines FurA ability to bind the metal corepressor. CONCLUSION This mechanism supports a novel feature of a Fur protein that emerges as a regulator, which connects the response to changes in the intracellular redox state and iron management in cyanobacteria. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Laura Botello-Morte
- 1 Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza , Zaragoza, Spain .,2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain
| | - Silvia Pellicer
- 1 Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza , Zaragoza, Spain .,2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain
| | - Violeta C Sein-Echaluce
- 1 Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza , Zaragoza, Spain .,2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain
| | - Lellys M Contreras
- 3 Institut of Molecular and Cellular Biology, Miguel Hernández University of Elche , Elche, Spain
| | - José Luis Neira
- 2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain .,3 Institut of Molecular and Cellular Biology, Miguel Hernández University of Elche , Elche, Spain
| | - Olga Abián
- 2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain .,4 IIS Aragon-Aragon Health Science Institute (IACS) and Networked Biomedical Research Center of Hepatic and Digestive Diseases (CIBERehd) , Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- 1 Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza , Zaragoza, Spain .,2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain .,5 ARAID Foundation , Government of Aragón, Zaragoza, Spain
| | - María Luisa Peleato
- 1 Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza , Zaragoza, Spain .,2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain
| | - María F Fillat
- 1 Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza , Zaragoza, Spain .,2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain
| | - María Teresa Bes
- 1 Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza , Zaragoza, Spain .,2 Institute for Biocomputation and Physics of Complex Systems (BIFI)-Associated Unit to IQRS-CSIC, University of Zaragoza , Zaragoza, Spain
| |
Collapse
|
3
|
Rodríguez-Alonso MJ, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras- Vázquez FJ. Rational re-design of the “double-racemase hydantoinase process” for optically pure production of natural and non-natural l-amino acids. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Soriano-Maldonado P, Andújar-Sánchez M, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ, Martínez-Rodríguez S. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49. Mol Biotechnol 2015; 57:454-65. [DOI: 10.1007/s12033-015-9839-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Moreno-Vargas LM, Carrillo-Ibarra N, Arzeta-Pino L, Benítez-Cardoza CG. Thermal unfolding of apo- and holo-enolase from Saccharomyces cerevisiae: Different mechanisms, similar activation enthalpies. Int J Biol Macromol 2011; 49:871-8. [DOI: 10.1016/j.ijbiomac.2011.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/24/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
7
|
Lo HF, Su JY, Chen HL, Chen JC, Lin LL. Biophysical studies of an NAD(P)(+)-dependent aldehyde dehydrogenase from Bacillus licheniformis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:1131-1142. [PMID: 21874381 DOI: 10.1007/s00249-011-0744-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
Aldehyde dehydrogenase (ALDH) catalyzes the conversion of aldehydes to the corresponding acids by means of an NAD(P)(+)-dependent virtually irreversible reaction. In this investigation, the biophysical properties of a recombinant Bacillus licheniformis ALDH (BlALDH) were characterized in detail by analytical ultracentrifuge (AUC) and various spectroscopic techniques. The oligomeric state of BlALDH in solution was determined to be tetrameric by AUC. Far-UV circular dichroism analysis revealed that the secondary structures of BlALDH were not altered in the presence of acetone and ethanol, whereas SDS had a detrimental effect on the folding of the enzyme. Thermal unfolding of this enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.2 M guanidine hydrochloride (GdnHCl) and reached an unfolded intermediate, [GdnHCl](05, N-U), at 0.93 M. BlALDH was active at concentrations of urea below 2 M, but it experienced an irreversible unfolding under 8 M denaturant. Taken together, this study provides a foundation for the future structural investigation of BlALDH, a typical member of ALDH superfamily enzymes.
Collapse
Affiliation(s)
- Huei-Fen Lo
- Department of Food Science and Technology, Hungkuang University, Shalu, Taichung City, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Chi MC, Chang HP, Chang GG, Wang TF, Huang HB, Lin LL. Biophysical characterization of a recombinant leucyl aminopeptidase from Bacillus kaustophilus. BIOCHEMISTRY (MOSCOW) 2010; 75:642-7. [DOI: 10.1134/s0006297910050159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Neira JL, Contreras LM, de los Paños OR, Sánchez-Hidalgo M, Martínez-Bueno M, Maqueda M, Rico M. Structural characterisation of the natively unfolded enterocin EJ97. Protein Eng Des Sel 2010; 23:507-18. [PMID: 20385607 DOI: 10.1093/protein/gzq020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriocins belong to the wide variety of antimicrobial ribosomal peptides synthesised by bacteria. Enterococci are Gram-positive, catalase-negative bacteria that produce lactic acid as the major end product of glucose fermentation. Many enterococcal strains produce bacteriocins, named enterocins. We describe in this work, the structural characterisation of the 44 residues-long enterocin EJ97, produced by Enterococcus faecalis EJ97. To this end, we have used a combined theoretical and experimental approach. First, we have characterised experimentally the conformational properties of EJ97 in solution under different conditions by using a number of spectroscopic techniques, namely fluorescence, CD, FTIR and NMR. Then, we have used several bioinformatic tools as an aid to complement the experimental information about the conformational properties of EJ97. We have shown that EJ97 is monomeric in aqueous solution and that it appears to be chiefly unfolded, save some flickering helical- or turn-like structures, probably stabilised by hydrophobic clustering. Accordingly, EJ97 does not show a cooperative sigmoidal transition when heated or upon addition of GdmCl. These conformational features are essentially pH-independent, as shown by NMR assignments at pHs 5.9 and 7.0. The computational results were puzzling, since some algorithms revealed the natively unfolded character of EJ97 (FoldIndex, the mean scaled hydropathy), whereas some others suggested the presence of ordered structure in its central region (PONDR, RONN and IUPRED). A future challenge is to produce much more experimental results to aid the development of accurate software tools for predicting disorder in proteins.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Edificio Torregaitán, 50009 Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|