Su YL, Yang JC, Lee H, Sheu F, Hsu CH, Lin SL, Chow LP. The C-terminal disulfide bonds of Helicobacter pylori GroES are critical for IL-8 secretion via the TLR4-dependent pathway in gastric epithelial cells.
THE JOURNAL OF IMMUNOLOGY 2015;
194:3997-4007. [PMID:
25769921 DOI:
10.4049/jimmunol.1401852]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Helicobacter pylori GroES (HpGroES), a potent immunogen, is a secreted virulence factor that stimulates production of proinflammatory cytokines and may contribute to gastric carcinogenesis. HpGroES is larger than other bacterial orthologs because of an additional C-terminal region, known as domain B. We found that the HpGroES-induced IL-8 release by human gastric epithelial cells was dependent on activation of the MAPK and NF-κB pathways. HpGroES lacking domain B was unable to induce IL-8 release. Additionally, a TLR4 inhibitor significantly inhibited IL-8 secretion and reduced HpGroES-induced activation of MAPKs. Furthermore, HpGroES-induced IL-8 release by primary gastric epithelial cells from TLR4(-/-) mice was significantly lower than from wild-type mice. We also found that HpGroES bound to TLR4 in cell lysates and colocalized with TLR4 on the cell membrane only when domain B was present. We then constructed two deletion mutants lacking C-terminal regions and mutants with point mutations of two of the four cysteine residues, C111 and C112, in domain B and found that the deletion mutants and a double mutant lacking the C94-C111 and C95-C112 disulfide bonds were unable to interact with TLR4 or induce IL-8 release. We conclude that HpGroES, in which a unique conformational structure, domain B, is generated by these two disulfide bonds, induces IL-8 secretion via a TLR4-dependent mechanism.
Collapse