1
|
Rice TCD8 Encoding a Multi-Domain GTPase Is Crucial for Chloroplast Development of Early Leaf Stage at Low Temperatures. BIOLOGY 2022; 11:biology11121738. [PMID: 36552248 PMCID: PMC9774597 DOI: 10.3390/biology11121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
The multi-domain GTPase (MnmE) is conservative from bacteria to human and participates in tRNA modified synthesis. However, our understanding of how the MnmE is involved in plant chloroplast development is scarce, let alone in rice. A novel rice mutant, thermo-sensitive chlorophyll-deficient mutant 8 (tcd8) was identified in this study, which apparently presented an albino phenotype at 20 °C but a normal green over 24 °C, coincided with chloroplast development and chlorophyll content. Map-based cloning and complementary test revealed the TCD8 encoded a multi-domain GTPase localized in chloroplasts. In addition, the disturbance of TCD8 suppressed the transcripts of certain chloroplast-related genes at low temperature, although the genes were recoverable to nearly normal levels at high temperature (32 °C), indicating that TCD8 governs chloroplast development at low temperature. The multi-domain GTPase gene in rice is first reported in this study, which endorses the importance in exploring chloroplast development in rice.
Collapse
|
2
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
3
|
|
4
|
Wauters L, Terheyden S, Gilsbach BK, Leemans M, Athanasopoulos PS, Guaitoli G, Wittinghofer A, Gloeckner CJ, Versées W, Kortholt A. Biochemical and kinetic properties of the complex Roco G-protein cycle. Biol Chem 2019; 399:1447-1456. [PMID: 30067506 DOI: 10.1515/hsz-2018-0227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Roco proteins have come into focus after mutations in the gene coding for the human Roco protein Leucine-rich repeat kinase 2 (LRRK2) were discovered to be one of the most common genetic causes of late onset Parkinson's disease. Roco proteins are characterized by a Roc domain responsible for GTP binding and hydrolysis, followed by a COR dimerization device. The regulation and function of this RocCOR domain tandem is still not completely understood. To fully biochemically characterize Roco proteins, we performed a systematic survey of the kinetic properties of several Roco protein family members, including LRRK2. Together, our results show that Roco proteins have a unique G-protein cycle. Our results confirm that Roco proteins have a low nucleotide affinity in the micromolar range and thus do not strictly depend on G-nucleotide exchange factors. Measurement of multiple and single turnover reactions shows that neither Pi nor GDP release are rate-limiting, while this is the case for the GAP-mediated GTPase reaction of some small G-proteins like Ras and for most other high affinity Ras-like proteins, respectively. The KM values of the reactions are in the range of the physiological GTP concentration, suggesting that LRRK2 functioning might be regulated by the cellular GTP level.
Collapse
Affiliation(s)
- Lina Wauters
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Susanne Terheyden
- Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands.,Structural Biology Group, Max-Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Bernd K Gilsbach
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany
| | - Margaux Leemans
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | - Giambattista Guaitoli
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max-Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany.,University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, D-72076 Tübingen, Germany
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands
| |
Collapse
|
5
|
Yamagami R, Miyake R, Fukumoto A, Nakashima M, Hori H. Consumption of N5, N10-methylenetetrahydrofolate in Thermus thermophilus under nutrient-poor condition. J Biochem 2018. [PMID: 29538705 DOI: 10.1093/jb/mvy037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TrmFO catalyzes the formation of 5-methyluridine at position 54 in tRNA and uses N5, N10-methylenetetrahydrofolate (CH2THF) as the methyl group donor. We found that the trmFO gene-disruptant strain of Thermus thermophilus, an extremely thermophilic eubacterium, can grow faster than the wild-type strain in the synthetic medium at 70°C (optimal growth temperature). Nucleoside analysis revealed that the majority of modifications were appropriately introduced into tRNA, showing that the limited nutrients are preferentially consumed in the tRNA modification systems. CH2THF is consumed not only for tRNA methylation by TrmFO but also for dTMP synthesis by ThyX and methionine synthesis by multiple steps including MetF reaction. In vivo experiment revealed that methylene group derived from serine was rapidly incorporated into DNA in the absence of TrmFO. Furthermore, the addition of thymidine to the medium accelerated growth speed of the wild-type strain. Moreover, in vitro experiments showed that TrmFO interfered with ThyX through consumption of CH2THF. Addition of methionine to the medium accelerated growth speed of wild-type strain and the activity of TrmFO was disturbed by MetF. Thus, the consumption of CH2THF by TrmFO has a negative effect on dTMP and methionine syntheses and results in the slow growth under a nutrient-poor condition.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Miyake
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ayaka Fukumoto
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Misa Nakashima
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
6
|
Rodionova IA, Goodacre N, Do J, Hosseinnia A, Babu M, Uetz P, Saier MH. The uridylyltransferase GlnD and tRNA modification GTPase MnmE allosterically control Escherichia coli folylpoly-γ-glutamate synthase FolC. J Biol Chem 2018; 293:15725-15732. [PMID: 30089654 DOI: 10.1074/jbc.ra118.004425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/31/2018] [Indexed: 01/20/2023] Open
Abstract
Folate derivatives are important cofactors for enzymes in several metabolic processes. Folate-related inhibition and resistance mechanisms in bacteria are potential targets for antimicrobial therapies and therefore a significant focus of current research. Here, we report that the activity of Escherichia coli poly-γ-glutamyl tetrahydrofolate/dihydrofolate synthase (FolC) is regulated by glutamate/glutamine-sensing uridylyltransferase (GlnD), THF-dependent tRNA modification enzyme (MnmE), and UDP-glucose dehydrogenase (Ugd) as shown by direct in vitro protein-protein interactions. Using kinetics analyses, we observed that GlnD, Ugd, and MnmE activate FolC many-fold by decreasing the K half of FolC for its substrate l-glutamate. Moreover, FolC inhibited the GTPase activity of MnmE at low GTP concentrations. The growth phenotypes associated with these proteins are discussed. These results, obtained using direct in vitro enzyme assays, reveal unanticipated networks of allosteric regulatory interactions in the folate pathway in E. coli and indicate regulation of polyglutamylated tetrahydrofolate biosynthesis by the availability of nitrogen sources, signaled by the glutamine-sensing GlnD protein.
Collapse
Affiliation(s)
- Irina A Rodionova
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116,
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284, and
| | - Jimmy Do
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284, and
| | - Milton H Saier
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116,
| |
Collapse
|
7
|
Ruiz-Partida R, Prado S, Villarroya M, Velázquez-Campoy A, Bravo J, Armengod ME. An Alternative Homodimerization Interface of MnmG Reveals a Conformational Dynamics that Is Essential for Its tRNA Modification Function. J Mol Biol 2018; 430:2822-2842. [PMID: 29870725 DOI: 10.1016/j.jmb.2018.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/25/2018] [Indexed: 01/28/2023]
Abstract
The Escherichia coli homodimeric proteins MnmE and MnmG form a functional complex, MnmEG, that modifies tRNAs using GTP, methylene-tetrahydrofolate, FAD, and glycine or ammonium. MnmE is a tetrahydrofolate- and GTP-binding protein, whereas MnmG is a FAD-binding protein with each protomer composed of the FAD-binding domain, two insertion domains, and the helical C-terminal domain. The detailed mechanism of the MnmEG-mediated reaction remains unclear partially due to incomplete structural information on the free- and substrate-bound forms of the complex. In this study, we show that MnmG can adopt in solution a dimer arrangement (form I) different from that currently considered as the only biologically active (form II). Normal mode analysis indicates that form I can oscillate in a range of open and closed conformations. Using isothermal titration calorimetry and native red electrophoresis, we show that a form-I open conformation, which can be stabilized in vitro by the formation of an interprotomer disulfide bond between the catalytic C277 residues, appears to be involved in the assembly of the MnmEG catalytic center. We also show that residues R196, D253, R436, R554 and E585 are important for the stabilization of form I and the tRNA modification function. We propose that the form I dynamics regulates the alternative access of MnmE and tRNA to the MnmG FAD active site. Finally, we show that the C-terminal region of MnmG contains a sterile alpha motif domain responsible for tRNA-protein and protein-protein interactions.
Collapse
Affiliation(s)
| | - Silvia Prado
- Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | | | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, and Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza 50018, Spain; Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain; Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid 28029, Spain; Fundacion ARAID, Government of Aragon, Zaragoza 50018, Spain
| | - Jerónimo Bravo
- Instituto de Biomedicina de Valencia-CSIC, Valencia 46010, Spain
| | - M-Eugenia Armengod
- Centro de Investigación Príncipe Felipe, Valencia 46012, Spain; Biomedical Research Networking Centre for Rare Diseases (CIBERER, Node 721), Valencia, Spain.
| |
Collapse
|
8
|
Abstract
The alarmone (p)ppGpp plays pivotal roles in basic bacterial stress responses by increasing tolerance of various nutritional limitations and chemical insults, including antibiotics. Despite intensive studies since (p)ppGpp was discovered over 4 decades ago, (p)ppGpp binding proteins have not been systematically identified in Escherichia coli. We applied DRaCALA (differential radial capillary action of ligand assay) to identify (p)ppGpp-protein interactions. We discovered 12 new (p)ppGpp targets in E. coli that, based on their physiological functions, could be classified into four major groups, involved in (i) purine nucleotide homeostasis (YgdH), (ii) ribosome biogenesis and translation (RsgA, Era, HflX, and LepA), (iii) maturation of dehydrogenases (HypB), and (iv) metabolism of (p)ppGpp (MutT, NudG, TrmE, NadR, PhoA, and UshA). We present a comprehensive and comparative biochemical and physiological characterization of these novel (p)ppGpp targets together with a comparative analysis of relevant, known (p)ppGpp binding proteins. Via this, primary targets of (p)ppGpp in E. coli are identified. The GTP salvage biosynthesis pathway and ribosome biogenesis and translation are confirmed as targets of (p)ppGpp that are highly conserved between E. coli and Firmicutes. In addition, an alternative (p)ppGpp degradative pathway, involving NudG and MutT, was uncovered. This report thus significantly expands the known cohort of (p)ppGpp targets in E. coli. Antibiotic resistance and tolerance exhibited by pathogenic bacteria have resulted in a global public health crisis. Remarkably, almost all bacterial pathogens require the alarmone (p)ppGpp to be virulent. Thus, (p)ppGpp not only induces tolerance of nutritional limitations and chemical insults, including antibiotics, but is also often required for induction of virulence genes. However, understanding of the molecular targets of (p)ppGpp and the mechanisms by which (p)ppGpp influences bacterial physiology is incomplete. In this study, a systematic approach was used to uncover novel targets of (p)ppGpp in E. coli, the best-studied model bacterium. Comprehensive comparative studies of the targets revealed conserved target pathways of (p)ppGpp in both Gram-positive and -negative bacteria and novel targets of (p)ppGpp, including an alternative degradative pathway of (p)ppGpp. Thus, our discoveries may help in understanding of how (p)ppGpp increases the stress resilience and multidrug tolerance not only of the model organism E. coli but also of the pathogenic organisms in which these targets are conserved.
Collapse
|
9
|
|
10
|
Pizzinga M, Harvey RF, Willis AE. Till stress do us ataRT: a novel toxin-antitoxin system targeting translation initiation. Cell Death Differ 2017; 24:951-952. [PMID: 28498366 PMCID: PMC5442479 DOI: 10.1038/cdd.2017.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mariavittoria Pizzinga
- Department of Toxicology, Medical Research Council Toxicology Unit, Lancaster Road, Leicester LE1 9HN UK
| | - Robert F Harvey
- Department of Toxicology, Medical Research Council Toxicology Unit, Lancaster Road, Leicester LE1 9HN UK
| | - Anne E Willis
- Department of Toxicology, Medical Research Council Toxicology Unit, Lancaster Road, Leicester LE1 9HN UK
| |
Collapse
|
11
|
Gkekas S, Singh RK, Shkumatov AV, Messens J, Fauvart M, Verstraeten N, Michiels J, Versées W. Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. J Biol Chem 2017; 292:5871-5883. [PMID: 28223358 DOI: 10.1074/jbc.m116.761809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The Obg protein family belongs to the TRAFAC (translation factor) class of P-loop GTPases and is conserved from bacteria to eukaryotes. Essential roles in many different cellular processes have been suggested for the Obg protein from Escherichia coli (ObgE), and we recently showed that it is a central regulator of bacterial persistence. Here, we report the first crystal structure of ObgE at 1.85-Å resolution in the GDP-bound state, showing the characteristic N-terminal domain and a central G domain that are common to all Obg proteins. ObgE also contains an intrinsically disordered C-terminal domain, and we show here that this domain specifically contributed to GTP binding, whereas it did not influence GDP binding or GTP hydrolysis. Biophysical analysis, using small angle X-ray scattering and multi-angle light scattering experiments, revealed that ObgE is a monomer in solution, regardless of the bound nucleotide. In contrast to recent suggestions, our biochemical analyses further indicate that ObgE is neither activated by K+ ions nor by homodimerization. However, the ObgE GTPase activity was stimulated upon binding to the ribosome, confirming the ribosome-dependent GTPase activity of the Obg family. Combined, our data represent an important step toward further unraveling the detailed molecular mechanism of ObgE, which might pave the way to further studies into how this GTPase regulates bacterial physiology, including persistence.
Collapse
Affiliation(s)
- Sotirios Gkekas
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Ranjan Kumar Singh
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Alexander V Shkumatov
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Joris Messens
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Maarten Fauvart
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and.,the Department of Life Science Technologies, Smart Systems and Emerging Technologies Unit, IMEC, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Jan Michiels
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Wim Versées
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, .,the VIB-VUB Center for Structural Biology, 1050 Brussels
| |
Collapse
|
12
|
Flavin-Dependent Methylation of RNAs: Complex Chemistry for a Simple Modification. J Mol Biol 2016; 428:4867-4881. [PMID: 27825927 DOI: 10.1016/j.jmb.2016.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
RNA methylation is the most abundant and evolutionarily conserved chemical modification of bases or ribose in noncoding and coding RNAs. This rather simple modification has nevertheless major consequences on the function of maturated RNA molecules and ultimately on their cellular fates. The methyl group employed in the methylation is almost universally derived from S-adenosyl-L-methionine via a simple SN2 displacement reaction. However, in some rare cases, the carbon originates from N5,N10-methylenetetrahydrofolate (CH2=THF). Here, a methylene group is transferred first and requires a subsequent reduction step (2e-+H+) via the flavin adenine dinucleotide hydroquinone (FADH-) to form the final methylated derivative. This FAD/folate-dependent mode of chemical reaction, called reductive methylation, is thus far more complex than the usual simple S-adenosyl-L-methionine-dependent one. This reaction is catalyzed by flavoenzymes, now named TrmFO and RlmFO, which respectively modify transfer and ribosomal RNAs. In this review, we briefly recount how these new RNA methyltransferases were discovered and describe a novel aspect of the chemistry of flavins, wherein this versatile biological cofactor is not just a simple redox catalyst but is also a new methyl transfer agent acting via a critical CH2=(N5)FAD iminium intermediate. The enigmatic structural reorganization of these enzymes that needs to take place during catalysis in order to build their active center is also discussed. Finally, recent findings demonstrated that this flavin-dependent mechanism is also employed by enzymatic systems involved in DNA synthesis, suggesting that the use of this cofactor as a methylating agent of biomolecules could be far more usual than initially anticipated.
Collapse
|