1
|
Lubell WD, Hamdane Y, Poupart J. N-Amino-imidazol-2-one (Nai) Residues as Tools for Peptide Mimicry: Synthesis, Conformational Analysis and Biomedical Applications. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
N-Amino-imidazol-2-one (Nai) residues are tools for studying peptide-backbone and side-chain conformation and function. Recent methods for substituted Nai residue synthesis, conformational analysis by X-ray crystallography and computation, and biomedical applications are reviewed, demonstrating the utility of this constrained residue to favor biologically active turn conformers with defined χ-dihedral angle orientations.1 Introduction2 Synthetic Methods3 Conformational Analysis4 Biomedical Applications5 Conclusions
Collapse
|
2
|
Bowles M, Proulx C. Solid phase submonomer azapeptide synthesis. Methods Enzymol 2021; 656:169-190. [PMID: 34325786 DOI: 10.1016/bs.mie.2021.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Azapeptides contain at least one aza-amino acid, where the α-carbon has been replaced by a nitrogen atom, and have found broad applicability in fields ranging from medicinal chemistry to biomaterials. In this chapter, we provide a step-by-step protocol for the solid phase submonomer synthesis of azapeptides, which includes three steps: (1) hydrazone activation and coupling onto a resin-bound peptide, (2) chemoselective semicarbazone functionalization for installation of the aza-amino acid side chain, and (3) orthogonal deprotection of the semicarbazone to complete the monomer addition cycle. We focus on semicarbazone functionalization by N-alkylation with primary alkyl halides, and describe conditions for coupling onto aza-amino acids. Such divergent methods accelerate the synthesis of peptidomimetics and allow the rapid introduction of a wide variety of natural and unnatural side chains directly on solid support using easily accessible submonomers.
Collapse
Affiliation(s)
- Maxwell Bowles
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
3
|
Hamdane Y, Chauhan PS, Vutla S, Mulumba M, Ong H, Lubell WD. 5-Substituted N-Aminoimidazolone Peptide Mimic Synthesis by Organocatalyzed Reactions of Azopeptides and Use in the Analysis of Biologically Active Backbone and Side-Chain Topology. Org Lett 2021; 23:3491-3495. [PMID: 33886343 DOI: 10.1021/acs.orglett.1c00936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fifteen N-aminoimidazolone (Nai) dipeptides having a variety of 5-position side-chain groups were synthesized by regioselective proline-catalyzed reactions of azopeptide and aldehyde components followed by acid-mediated dehydration of an aza-aspartate semialdehyde intermediate. The introduction of 5-aryl-Nai dipeptides into cluster of differentiation 36 receptor (CD36) peptide ligands has provided insight into the conformation responsible for binding affinity and anti-inflammatory activity.
Collapse
|
4
|
|
5
|
Millet-Boureima C, Selber-Hnatiw S, Gamberi C. Drug discovery and chemical probing in Drosophila. Genome 2020; 64:147-159. [PMID: 32551911 DOI: 10.1139/gen-2020-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flies are increasingly utilized in drug discovery and chemical probing in vivo, which are novel technologies complementary to genetic probing in fundamental biological studies. Excellent genetic conservation, small size, short generation time, and over one hundred years of genetics make Drosophila an attractive model for rapid assay readout and use of analytical amounts of compound, enabling the experimental iterations needed in early drug development at a fraction of time and costs. Here, we describe an effective drug-testing pipeline using adult flies that can be easily implemented to study several disease models and different genotypes to discover novel molecular insight, probes, quality lead compounds, and develop novel prototype drugs.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Susannah Selber-Hnatiw
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
6
|
Millet-Boureima C, Chingle R, Lubell WD, Gamberi C. Cyst Reduction in a Polycystic Kidney Disease Drosophila Model Using Smac Mimics. Biomedicines 2019; 7:biomedicines7040082. [PMID: 31635379 PMCID: PMC6966561 DOI: 10.3390/biomedicines7040082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited malady affecting 12.5 million people worldwide. Therapeutic options to treat PKD are limited, due in part to lack of precise knowledge of underlying pathological mechanisms. Mimics of the second mitochondria-derived activator of caspases (Smac) have exhibited activity as antineoplastic agents and reported recently to ameliorate cysts in a murine ADPKD model, possibly by differentially targeting cystic cells and sparing the surrounding tissue. A first-in-kind Drosophila PKD model has now been employed to probe further the activity of novel Smac mimics. Substantial reduction of cystic defects was observed in the Malpighian (renal) tubules of treated flies, underscoring mechanistic conservation of the cystic pathways and potential for efficient testing of drug prototypes in this PKD model. Moreover, the observed differential rescue of the anterior and posterior tubules overall, and within their physiologically diverse intermediate and terminal regions implied a nuanced response in distinct tubular regions contingent upon the structure of the Smac mimic. Knowledge gained from studying Smac mimics reveals the capacity for the Drosophila model to precisely probe PKD pharmacology highlighting the value for such critical evaluation of factors implicated in renal function and pathology.
Collapse
Affiliation(s)
| | - Ramesh Chingle
- Département de Chimie, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - William D Lubell
- Département de Chimie, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
7
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Aza-Amino Acids Disrupt β-Sheet Secondary Structures. Molecules 2019; 24:molecules24101919. [PMID: 31109055 PMCID: PMC6572070 DOI: 10.3390/molecules24101919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/29/2023] Open
Abstract
Cα to N substitution in aza-amino acids imposes local conformational constraints, changes in hydrogen bonding properties, and leads to adaptive chirality at the nitrogen atom. These properties can be exploited in mimicry and stabilization of peptide secondary structures and self-assembly. Here, the effect of a single aza-amino acid incorporation located in the upper β-strand at a hydrogen-bonded (HB) site of a β-hairpin model peptide (H-Arg-Tyr-Val-Glu-Val-d-Pro-Gly-Orn-Lys-Ile-Leu-Gln-NH2) is reported. Specifically, analogs in which valine3 was substituted for aza-valine3 or aza-glycine3 were synthesized, and their β-hairpin stabilities were examined using Nuclear Magnetic Resonance (NMR) spectroscopy. The azapeptide analogs were found to destabilize β-hairpin formation compared to the parent peptide. The aza-valine3 residue was more disruptive of β-hairpin geometry than its aza-glycine3 counterpart.
Collapse
|
9
|
Mir FM, Atmuri NDP, Bourguet CB, Fores JR, Hou X, Chemtob S, Lubell WD. Paired Utility of Aza-Amino Acyl Proline and Indolizidinone Amino Acid Residues for Peptide Mimicry: Conception of Prostaglandin F2α Receptor Allosteric Modulators That Delay Preterm Birth. J Med Chem 2019; 62:4500-4525. [PMID: 30932486 DOI: 10.1021/acs.jmedchem.9b00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide mimicry employing a combination of aza-amino acyl proline and indolizidinone residues has been used to develop allosteric modulators of the prostaglandin F2α receptor. The systematic study of the N-terminal phenylacetyl moiety and the conformation and side chain functions of the central turn dipeptide residue has demonstrated the sensitive relationships between modulator activity and topology. Examination of aza-Gly-Pro and aza-Phe-Pro analogs 2a and 2b in a murine preterm labor model featuring treatment with lipopolysaccharide demonstrated their capacity to extend significantly (>20 h) the average time of delivery offering new prototypes for delaying premature birth.
Collapse
Affiliation(s)
- Fatemeh M Mir
- Département de Chimie , Université de Montréal , C.P. 6128 Succursale Centre-Ville , Montréal H3C 3J7 QC , Canada
| | - N D Prasad Atmuri
- Département de Chimie , Université de Montréal , C.P. 6128 Succursale Centre-Ville , Montréal H3C 3J7 QC , Canada
| | - Carine B Bourguet
- Département de Chimie , Université de Montréal , C.P. 6128 Succursale Centre-Ville , Montréal H3C 3J7 QC , Canada
| | - Jennifer Rodon Fores
- Département de Chimie , Université de Montréal , C.P. 6128 Succursale Centre-Ville , Montréal H3C 3J7 QC , Canada
| | - Xin Hou
- Centre Hospitalier Universitaire Sainte-Justine Research Center , Montréal H3T 1C5 , QC , Canada
| | - Sylvain Chemtob
- Centre Hospitalier Universitaire Sainte-Justine Research Center , Montréal H3T 1C5 , QC , Canada
| | - William D Lubell
- Département de Chimie , Université de Montréal , C.P. 6128 Succursale Centre-Ville , Montréal H3C 3J7 QC , Canada
| |
Collapse
|
10
|
Chingle R, Mulumba M, Chung NN, Nguyen TMD, Ong H, Ballet S, Schiller PW, Lubell WD. Solid-Phase Azopeptide Diels–Alder Chemistry for Aza-pipecolyl Residue Synthesis To Study Peptide Conformation. J Org Chem 2019; 84:6006-6016. [DOI: 10.1021/acs.joc.8b03283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Nga N. Chung
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | - Thi M.-D. Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | | | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter W. Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | | |
Collapse
|
11
|
Arujõe M, Ploom A, Mastitski A, Järv J. Influence of steric effects in solid-phase aza-peptide synthesis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics. Bioorg Med Chem 2018; 26:2759-2765. [PMID: 29395804 DOI: 10.1016/j.bmc.2018.01.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 01/27/2023]
Abstract
The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market.
Collapse
Affiliation(s)
- Miloš Erak
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
|
14
|
Chingle R, Proulx C, Lubell WD. Azapeptide Synthesis Methods for Expanding Side-Chain Diversity for Biomedical Applications. Acc Chem Res 2017; 50:1541-1556. [PMID: 28598597 DOI: 10.1021/acs.accounts.7b00114] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mimicry of bioactive conformations is critical for peptide-based medicinal chemistry because such peptidomimetics may augment stability, enhance affinity, and increase specificity. Azapeptides are peptidomimetics in which the α-carbon(s) of one or more amino acid residues are substituted by nitrogen. The resulting semicarbazide analogues have been shown to reinforce β-turn conformation through the combination of lone pair-lone pair repulsion of the adjacent hydrazine nitrogen and urea planarity. Substitution of a semicarbazide for an amino amide residue in a peptide may retain biological activity and add benefits such as improved metabolic stability. The applications of azapeptides include receptor ligands, enzyme inhibitors, prodrugs, probes, and imaging agents. Moreover, azapeptides have proven therapeutic utility. For example, the aza-glycinamide analogue of the luteinizing hormone-releasing hormone analogue Zoladex is a potent long-acting agonist currently used in the clinic for the treatment of prostate and breast cancer. However, the use of azapeptides was hampered by tedious solution-phase synthetic routes for selective hydrazine functionalization. A remarkable stride to overcome this bottleneck was made in 2009 through the introduction of the submonomer procedure for azapeptide synthesis, which enabled addition of diverse side chains onto a common semicarbazone intermediate, providing a means to construct azapeptide libraries by solution- and solid-phase chemistry. In brief, aza residues are introduced into the peptide chain using the submonomer strategy by semicarbazone incorporation, deprotonation, N-alkylation, and orthogonal deprotection. Amino acylation of the resulting semicarbazide and elongation gives the desired azapeptide. Since the initial report, a number of chemical transformations have taken advantage of the orthogonal chemistry of semicarbazone residues (e.g., Michael additions and N-arylations). In addition, libraries have been synthesized from libraries by diversification of aza-propargylglycine (e.g., A3 coupling reactions, [1,3]-dipolar cycloadditions, and 5-exo-dig cyclizations) and aza-chloroalkylglycine residues. In addition, oxidation of aza-glycine residues has afforded azopeptides that react in pericyclic reactions (e.g., Diels-Alder and Alder-ene chemistry). The bulk of these transformations of aza-glycine residues have been developed by the Lubell laboratory, which has applied such chemistry in the synthesis of ligands with promising biological activity for treating diseases such as cancer and age-related macular degeneration. Azapeptide analogues of growth hormone-releasing peptide-6 (His-d-Trp-Ala-Trp-d-Phe-Lys-NH2, GHRP-6) have for example been pursued as ligands of the cluster of differentiation 36 receptor (CD36) and show promising activity for the development of treatments for angiogenesis-related diseases, such as age-related macular degeneration, as well as for atherosclerosis. Azapeptides have also been employed to make a series of conformationally constrained second mitochondria-derived activator of caspase (Smac) mimetics that exhibit promising apoptosis-inducing activity in cancer cells. The synthesis of cyclic azapeptide derivatives was used to make an aza scan to study the conformation-activity relationships of the anticancer agent cilengitide, cyclo(RGDf-N(Me)V), and its parent counterpart cyclo(RGDfV), which exhibit potency against human tumor metastasis and tumor-induced angiogenesis. Innovations in the synthesis and application of azapeptides will be presented in this Account, focusing on the creation and use of side-chain diversity in medicinal chemistry.
Collapse
Affiliation(s)
- Ramesh Chingle
- Department of Chemistry, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| | - Caroline Proulx
- Department of Chemistry, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| |
Collapse
|