1
|
Bouaïcha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins (Basel) 2019; 11:E714. [PMID: 31817927 PMCID: PMC6950048 DOI: 10.3390/toxins11120714] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Hepatotoxic microcystins (MCs) are the most widespread class of cyanotoxins and the one that has most often been implicated in cyanobacterial toxicosis. One of the main challenges in studying and monitoring MCs is the great structural diversity within the class. The full chemical structure of the first MC was elucidated in the early 1980s and since then, the number of reported structural analogues has grown steadily and continues to do so, thanks largely to advances in analytical methodology. The structures of some of these analogues have been definitively elucidated after chemical isolation using a combination of techniques including nuclear magnetic resonance, amino acid analysis, and tandem mass spectrometry (MS/MS). Others have only been tentatively identified using liquid chromatography-MS/MS without chemical isolation. An understanding of the structural diversity of MCs, the genetic and environmental controls for this diversity and the impact of structure on toxicity are all essential to the ongoing study of MCs across several scientific disciplines. However, because of the diversity of MCs and the range of approaches that have been taken for characterizing them, comprehensive information on the state of knowledge in each of these areas can be challenging to gather. We have conducted an in-depth review of the literature surrounding the identification and toxicity of known MCs and present here a concise review of these topics. At present, at least 279 MCs have been reported and are tabulated here. Among these, about 20% (55 of 279) appear to be the result of chemical or biochemical transformations of MCs that can occur in the environment or during sample handling and extraction of cyanobacteria, including oxidation products, methyl esters, or post-biosynthetic metabolites. The toxicity of many MCs has also been studied using a range of different approaches and a great deal of variability can be observed between reported toxicities, even for the same congener. This review will help clarify the current state of knowledge on the structural diversity of MCs as a class and the impacts of structure on toxicity, as well as to identify gaps in knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Christopher O. Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Zineb Labidi
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Amina Djabri
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Naila Yasmine Benayache
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Tri Nguyen-Quang
- Biofluids and Biosystems Modeling (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro, B2N 5E3 Nova Scotia, Canada;
| |
Collapse
|
2
|
Foss AJ, Miles CO, Samdal IA, Løvberg KE, Wilkins AL, Rise F, Jaabæk JAH, McGowan PC, Aubel MT. Analysis of free and metabolized microcystins in samples following a bird mortality event. HARMFUL ALGAE 2018; 80:117-129. [PMID: 30502804 DOI: 10.1016/j.hal.2018.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
In the summer of 2012, over 750 dead and dying birds were observed at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island, Maryland, USA (Chesapeake Bay). Clinical signs suggested avian botulism, but an ongoing dense Microcystis bloom was present in an impoundment on the island. Enzyme-linked immunosorbent assay (ELISA) analysis of a water sample indicated 6000 ng mL-1 of microcystins (MCs). LC-UV/MS analysis confirmed the presence of MC-LR and a high concentration of an unknown MC congener (m/z 1037.5). The unknown MC was purified and confirmed to be [D-Leu1]MC-LR using NMR spectroscopy, LC-HRMS and LC-MS2, which slowly converted to [D-Leu1,Glu(OMe)6]MC-LR during storage in MeOH. Lyophilized algal material from the bloom was further characterized using LC-HRMS and LC-MS2 in combination with chemical derivatizations, and an additional 24 variants were detected, including MCs conjugated to Cys, GSH and γ-GluCys and their corresponding sulfoxides. Mallard (Anas platyrhynchos) livers were tested to confirm MC exposure. Two broad-specificity MC ELISAs and LC-MS2 were used to measure free MCs, while 'total' MCs were estimated by both MMPB (3-methoxy-2-methyl-4-phenylbutyric acid) and thiol de-conjugation techniques. Free microcystins in the livers (63-112 ng g-1) accounted for 33-41% of total microcystins detected by de-conjugation and MMPB techniques. Free [D-Leu1]MC-LR was quantitated in tissues at 25-67 ng g-1 (LC-MS2). The levels of microcystin varied based on analytical method used, highlighting the need to develop a comprehensive analysis strategy to elucidate the etiology of bird mortality events when microcystin-producing HABs are present.
Collapse
Affiliation(s)
- Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, United States.
| | - Christopher O Miles
- Norwegian Veterinary Institute, P. O. Box 750 Sentrum, N-0106, Oslo, Norway; Measurement Science and Standards, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P. O. Box 750 Sentrum, N-0106, Oslo, Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P. O. Box 750 Sentrum, N-0106, Oslo, Norway
| | - Alistair L Wilkins
- Norwegian Veterinary Institute, P. O. Box 750 Sentrum, N-0106, Oslo, Norway; Chemistry Department, University of Waikato, Private Bag 3105, 3240, Hamilton, New Zealand
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315, Oslo, Norway
| | - J Atle H Jaabæk
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315, Oslo, Norway
| | - Peter C McGowan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD, United States
| | - Mark T Aubel
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, United States
| |
Collapse
|
3
|
Kim G, Han S, Won H. Isolation of Microcystin-LR and Its Potential Function of Ionophore. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2015. [DOI: 10.6564/jkmrs.2015.19.2.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Weller MG, Zeck A, Eikenberg A, Nagata S, Ueno Y, Niessner R. Development of a direct competitive microcystin immunoassay of broad specificity. ANAL SCI 2001; 17:1445-8. [PMID: 11783797 DOI: 10.2116/analsci.17.1445] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M G Weller
- Institute of Hydrochemistry, Technical University of Munich, München, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Pellegrini M, Gobbo M, Rocchi R, Peggion E, Mammi S, Mierke DF. Threonine(6)-bradykinin: conformational study of a flexible peptide in dimethyl sulfoxide by NMR and ensemble calculations. Biopolymers 2000; 40:561-9. [PMID: 9101761 DOI: 10.1002/(sici)1097-0282(1996)40:5%3c561::aid-bip14%3e3.0.co;2-k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M Pellegrini
- Gustaf H. Carlson School of Chemistry, Clark University, Worcester, MA 01610, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
The conformation of oligomers of beta-amino acids of the general type Ac-[beta-Xaa]n-NHMe (beta-Xaa = beta-Ala, beta-Aib, and beta-Abu; n = 1-4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6-31G*, HF/3-21G). The solvent influence was considered employing two quantum-mechanical self-consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in beta-peptides. Most of them can be derived from the monomer units of blocked beta-peptides with n = 1. The stability and geometries of the beta-peptide structures are considerably influenced by the side-chain positions, by the configurations at the C alpha- and C beta-atoms of the beta-amino acid constituents, and especially by environmental effects. Structure peculiarities of beta-peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in alpha-peptides.
Collapse
Affiliation(s)
- K Möhle
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig, Germany
| | | | | | | | | |
Collapse
|
7
|
Mierke DF. Overlapping Ensemble Dynamics: A Method for Structure Calculations of Multiple Configurational Isomers. J Am Chem Soc 1998. [DOI: 10.1021/ja974090s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dale F. Mierke
- Contribution from the Department of Molecular Pharmacology, Physiology, & Biotechnology, Division of Biology & Medicine, and Department of Chemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
8
|
|
9
|
Pellegrini M, Gobbo M, Rocchi R, Peggion E, Mammi S, Mierke DF. Threonine6-bradykinin: Conformational study of a flexible peptide in dimethyl sulfoxide by NMR and ensemble calculations. Biopolymers 1996. [DOI: 10.1002/(sici)1097-0282(1996)40:5<561::aid-bip14>3.0.co;2-k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|