1
|
Chew YH, Marucci L. Mechanistic Model-Driven Biodesign in Mammalian Synthetic Biology. Methods Mol Biol 2024; 2774:71-84. [PMID: 38441759 DOI: 10.1007/978-1-0716-3718-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mathematical modeling plays a vital role in mammalian synthetic biology by providing a framework to design and optimize design circuits and engineered bioprocesses, predict their behavior, and guide experimental design. Here, we review recent models used in the literature, considering mathematical frameworks at the molecular, cellular, and system levels. We report key challenges in the field and discuss opportunities for genome-scale models, machine learning, and cybergenetics to expand the capabilities of model-driven mammalian cell biodesign.
Collapse
Affiliation(s)
- Yin Hoon Chew
- School of Mathematics, University of Birmingham, Birmingham, UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Page A, Fusil F, Cosset FL. Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction. Viruses 2020; 12:v12121427. [PMID: 33322556 PMCID: PMC7764518 DOI: 10.3390/v12121427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors are versatile tools for gene delivery purposes. While in the earlier versions of retroviral vectors, transgene expression was controlled by the long terminal repeats (LTRs), the latter generations of vectors, including those derived from lentiviruses, incorporate internal constitutive or regulated promoters in order to regulate transgene expression. This allows to temporally and/or quantitatively control transgene expression, which is required for many applications such as for clinical applications, when transgene expression is required in specific tissues and at a specific timing. Here we review the main systems that have been developed for transgene regulated expression following lentiviral gene transfer. First, the induction of gene expression can be triggered either by external or by internal cues. Indeed, these regulated vector systems may harbor promoters inducible by exogenous stimuli, such as small molecules (e.g., antibiotics) or temperature variations, offering the possibility to tune rapidly transgene expression in case of adverse events. Second, expression can be indirectly adjusted by playing on inserted sequence copies, for instance by gene excision. Finally, synthetic networks can be developed to sense specific endogenous signals and trigger defined responses after information processing. Regulatable lentiviral vectors (LV)-mediated transgene expression systems have been widely used in basic research to uncover gene functions or to temporally reprogram cells. Clinical applications are also under development to induce therapeutic molecule secretion or to implement safety switches. Such regulatable approaches are currently focusing much attention and will benefit from the development of other technologies in order to launch autonomously controlled systems.
Collapse
|
3
|
Xie M, Fussenegger M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat Rev Mol Cell Biol 2019; 19:507-525. [PMID: 29858606 DOI: 10.1038/s41580-018-0024-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic biology is the discipline of engineering application-driven biological functionalities that were not evolved by nature. Early breakthroughs of cell engineering, which were based on ectopic (over)expression of single sets of transgenes, have already had a revolutionary impact on the biotechnology industry, regenerative medicine and blood transfusion therapies. Now, we require larger-scale, rationally assembled genetic circuits engineered to programme and control various human cell functions with high spatiotemporal precision in order to solve more complex problems in applied life sciences, biomedicine and environmental sciences. This will open new possibilities for employing synthetic biology to advance personalized medicine by converting cells into living therapeutics to combat hitherto intractable diseases.
Collapse
Affiliation(s)
- Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,University of Basel, Faculty of Science, Basel, Switzerland.
| |
Collapse
|
4
|
Mathur M, Xiang JS, Smolke CD. Mammalian synthetic biology for studying the cell. J Cell Biol 2016; 216:73-82. [PMID: 27932576 PMCID: PMC5223614 DOI: 10.1083/jcb.201611002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022] Open
Abstract
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology.
Collapse
Affiliation(s)
- Melina Mathur
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Joy S Xiang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
5
|
Abstract
Gene expression circuitries, which enable cells to detect precise levels within a morphogen concentration gradient, have a pivotal impact on biological processes such as embryonic pattern formation, paracrine and autocrine signalling, and cellular migration. We present the rational synthesis of a synthetic genetic circuit exhibiting band-pass detection characteristics. The components, involving multiply linked mammalian trans-activator and -repressor control systems, were selected and fine-tuned to enable the detection of ‘low-threshold’ morphogen (tetracycline) concentrations, in which target gene expression was triggered, and a ‘high-threshold’ concentration, in which expression was muted. In silico predictions and supporting experimental findings indicated that the key criterion for functional band-pass detection was the matching of componentry that enabled sufficient separation of the low and high threshold points. Using the circuitry together with a fluorescence-encoded target gene, mammalian cells were genetically engineered to be capable of forming a band-like pattern of differentiation in response to a tetracycline chemical gradient. Synthetic gene networks designed to emulate naturally occurring gene behaviours provide not only insight into biological processes, but may also foster progress in future tissue engineering, gene therapy and biosensing applications.
Collapse
Affiliation(s)
- David Greber
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | |
Collapse
|
6
|
Challenges in synthetically designing mammalian circadian clocks. Curr Opin Biotechnol 2010; 21:556-65. [DOI: 10.1016/j.copbio.2010.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 01/21/2023]
|
7
|
Tigges M, Dénervaud N, Greber D, Stelling J, Fussenegger M. A synthetic low-frequency mammalian oscillator. Nucleic Acids Res 2010; 38:2702-11. [PMID: 20197318 PMCID: PMC2860125 DOI: 10.1093/nar/gkq121] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Circadian clocks have long been known to be essential for the maintenance of physiological and behavioral processes in a variety of organisms ranging from plants to humans. Dysfunctions that subvert gene expression of oscillatory circadian-clock components may result in severe pathologies, including tumors and metabolic disorders. While the underlying molecular mechanisms and dynamics of complex gene behavior are not fully understood, synthetic approaches have provided substantial insight into the operation of complex control circuits, including that of oscillatory networks. Using iterative cycles of mathematical model-guided design and experimental analyses, we have developed a novel low-frequency mammalian oscillator. It incorporates intronically encoded siRNA-based silencing of the tetracycline-dependent transactivator to enable the autonomous and robust expression of a fluorescent transgene with periods of 26 h, a circadian clock-like oscillatory behavior. Using fluorescence-based time-lapse microscopy of engineered CHO-K1 cells, we profiled expression dynamics of a destabilized yellow fluorescent protein variant in single cells and real time. The novel oscillator design may enable further insights into the system dynamics of natural periodic processes as well as into siRNA-mediated transcription silencing. It may foster advances in design, analysis and application of complex synthetic systems in future gene therapy initiatives.
Collapse
Affiliation(s)
- Marcel Tigges
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Tigges M, Fussenegger M. Recent advances in mammalian synthetic biology-design of synthetic transgene control networks. Curr Opin Biotechnol 2009; 20:449-60. [PMID: 19762224 DOI: 10.1016/j.copbio.2009.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
Capitalizing on an era of functional genomic research, systems biology offers a systematic quantitative analysis of existing biological systems thereby providing the molecular inventory of biological parts that are currently being used for rational synthesis and engineering of complex biological systems with novel and potentially useful functions-an emerging discipline known as synthetic biology. During the past decade synthetic biology has rapidly developed from simple control devices fine-tuning the activity of single genes and proteins to multi-gene/protein-based transcription and signaling networks providing new insight into global control and molecular reaction dynamics, thereby enabling the design of novel drug-synthesis pathways as well as genetic devices with unmatched biological functions. While pioneering synthetic devices have first been designed as test, toy, and teaser systems for use in prokaryotes and lower eukaryotes, first examples of a systematic assembly of synthetic gene networks in mammalian cells has sketched the full potential of synthetic biology: foster novel therapeutic opportunities in gene and cell-based therapies. Here we provide a concise overview on the latest advances in mammalian synthetic biology.
Collapse
Affiliation(s)
- Marcel Tigges
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | | |
Collapse
|
9
|
Agapakis CM, Silver PA. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. MOLECULAR BIOSYSTEMS 2009; 5:704-13. [PMID: 19562109 DOI: 10.1039/b901484e] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthetic biology has been used to describe many biological endeavors over the past thirty years--from designing enzymes and in vitro systems, to manipulating existing metabolisms and gene expression, to creating entirely synthetic replicating life forms. What separates the current incarnation of synthetic biology from the recombinant DNA technology or metabolic engineering of the past is an emphasis on principles from engineering such as modularity, standardization, and rigorously predictive models. As such, synthetic biology represents a new paradigm for learning about and using biological molecules and data, with applications in basic science, biotechnology, and medicine. This review covers the canonical examples as well as some recent advances in synthetic biology in terms of what we know and what we can learn about the networks underlying biology, and how this endeavor may shape our understanding of living systems.
Collapse
|
10
|
Abstract
This paper is concerned with a novel algorithm to study networks of biological clocks. A new set of conditions is established that can be used to verify whether an existing network synchronizes or to give guidelines to construct a new synthetic network of biological oscillators that synchronize. The methodology uses the so-called contraction theory from dynamical system theory and Gershgorin disk theorem. The strategy is validated on two examples: a model of glycolisis in yeast cells and a synthetic network of Repressilators that synchronizes.
Collapse
Affiliation(s)
- G Russo
- Department of Systems and Computer Engineering, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
11
|
Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable synthetic mammalian oscillator. Nature 2009; 457:309-12. [PMID: 19148099 DOI: 10.1038/nature07616] [Citation(s) in RCA: 407] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 11/04/2008] [Indexed: 01/27/2023]
Abstract
Autonomous and self-sustained oscillator circuits mediating the periodic induction of specific target genes are minimal genetic time-keeping devices found in the central and peripheral circadian clocks. They have attracted significant attention because of their intriguing dynamics and their importance in controlling critical repair, metabolic and signalling pathways. The precise molecular mechanism and expression dynamics of this mammalian circadian clock are still not fully understood. Here we describe a synthetic mammalian oscillator based on an auto-regulated sense-antisense transcription control circuit encoding a positive and a time-delayed negative feedback loop, enabling autonomous, self-sustained and tunable oscillatory gene expression. After detailed systems design with experimental analyses and mathematical modelling, we monitored oscillating concentrations of green fluorescent protein with tunable frequency and amplitude by time-lapse microscopy in real time in individual Chinese hamster ovary cells. The synthetic mammalian clock may provide an insight into the dynamics of natural periodic processes and foster advances in the design of prosthetic networks in future gene and cell therapies.
Collapse
Affiliation(s)
- Marcel Tigges
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
12
|
Greber D, Fussenegger M. Mammalian synthetic biology: Engineering of sophisticated gene networks. J Biotechnol 2007; 130:329-45. [PMID: 17602777 DOI: 10.1016/j.jbiotec.2007.05.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/05/2007] [Accepted: 05/18/2007] [Indexed: 11/26/2022]
Abstract
With the recent development of a wide range of inducible mammalian transgene control systems it has now become possible to create functional synthetic gene networks by linking and connecting systems into various configurations. The past 5 years has thus seen the design and construction of the first synthetic mammalian gene regulatory networks. These networks have built upon pioneering advances in prokaryotic synthetic networks and possess an impressive range of functionalities that will some day enable the engineering of sophisticated inter- and intra-cellular functions to become a reality. At a relatively simple level, the modular linking of transcriptional components has enabled the creation of genetic networks that are strongly analogous to the architectural design and functionality of electronic circuits. Thus, by combining components in different serial or parallel configurations it is possible to produce networks that follow strict logic in integrating multiple independent signals (logic gates and transcriptional cascades) or which temporally modify input signals (time-delay circuits). Progressing in terms of sophistication, synthetic transcriptional networks have also been constructed which emulate naturally occurring genetic properties, such as bistability or dynamic instability. Toggle switches which possess "memory" so as to remember transient administered inputs, hysteric switches which are resistant to stochastic fluctuations in inputs, and oscillatory networks which produce regularly timed expression outputs, are all examples of networks that have been constructed using such properties. Initial steps have also been made in designing the above networks to respond not only to exogenous signals, but also endogenous signals that may be associated with aberrant cellular function or physiology thereby providing a means for tightly controlled gene therapy applications. Moving beyond pure transcriptional control, synthetic networks have also been created which utilize phenomena, such as post-transcriptional silencing, translational control, or inter-cellular signaling to produce novel network-based control both within and between cells. It is envisaged in the not-too-distant future that these networks will provide the basis for highly sophisticated genetic manipulations in biopharmaceutical manufacturing, gene therapy and tissue engineering applications.
Collapse
Affiliation(s)
- David Greber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|