1
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Corrigendum to "Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control" [New Biotechnol 79 (2024) 1-19]. N Biotechnol 2024; 84:30-36. [PMID: 39332183 DOI: 10.1016/j.nbt.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Yu S, Vassilev S, Lim ZR, Sivalingam J, Lam ATL, Ho V, Renia L, Malleret B, Reuveny S, Oh SKW. Selection of O-negative induced pluripotent stem cell clones for high-density red blood cell production in a scalable perfusion bioreactor system. Cell Prolif 2022; 55:e13218. [PMID: 35289971 PMCID: PMC9357363 DOI: 10.1111/cpr.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives Large‐scale generation of universal red blood cells (RBCs) from O‐negative (O‐ve) human induced pluripotent stem cells (hiPSCs) holds the potential to alleviate worldwide shortages of blood and provide a safe and secure year‐round supply. Mature RBCs and reticulocytes, the immature counterparts of RBCs generated during erythropoiesis, could also find important applications in research, for example in malaria parasite infection studies. However, one major challenge is the lack of a high‐density culture platform for large‐scale generation of RBCs in vitro. Materials and Methods We generated 10 O‐ve hiPSC clones and evaluated their potential for mesoderm formation and erythroid differentiation. We then used a perfusion bioreactor system to perform studies with high‐density cultures of erythroblasts in vitro. Results Based on their tri‐lineage (and specifically mesoderm) differentiation potential, we isolated six hiPSC clones capable of producing functional erythroblasts. Using the best performing clone, we demonstrated the small‐scale generation of high‐density cultures of erythroblasts in a perfusion bioreactor system. After process optimization, we were able to achieve a peak cell density of 34.7 million cells/ml with 92.2% viability in the stirred bioreactor. The cells expressed high levels of erythroblast markers, showed oxygen carrying capacity, and were able to undergo enucleation. Conclusions This study demonstrated a scalable platform for the production of functional RBCs from hiPSCs. The perfusion culture platform we describe here could pave the way for large volume‐controlled bioreactor culture for the industrial generation of high cell density erythroblasts and RBCs.
Collapse
Affiliation(s)
- SuE Yu
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Svetlan Vassilev
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Zhong Ri Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Jaichandran Sivalingam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Alan Tin Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Valerie Ho
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Steve Kah Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| |
Collapse
|
3
|
Coleman O, Suda S, Meiller J, Henry M, Riedl M, Barron N, Clynes M, Meleady P. Increased growth rate and productivity following stable depletion of miR-7 in a mAb producing CHO cell line causes an increase in proteins associated with the Akt pathway and ribosome biogenesis. J Proteomics 2019; 195:23-32. [PMID: 30641232 DOI: 10.1016/j.jprot.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Cell line engineering using microRNAs represents a desirable route for improving the efficiency of recombinant protein production by CHO cells. In this study we generated stable CHO DP12 cells expressing a miR-7 sponge transcript which sequesters miR-7 from its endogenous targets. Depletion of miR-7 results in a 65% increase in cell growth and >3-fold increase in yield of secreted IgG protein. Quantitative labelfree LC-MS/MS proteomic profiling was carried out to identify the targets of miR-7 and understand the functional drivers of the improved CHO cell phenotypes. Subcellular enrichment and total proteome analysis identified more than 3000 proteins per fraction resulting in over 5000 unique proteins identified per timepoint analysed. Early stage culture analysis identified 117 proteins overexpressed in miR-7 depleted cells. A subset of these proteins are involved in the Akt pathway which could be the underlying route for cell density improvement and may be exploited more specifically in the future. Late stage culture identified 160 proteins overexpressed in miR-7 depleted cells with some of these involved in ribosome biogenesis which may be causing the increased productivity through improved translational efficiency. This is the first in-depth proteomic profiling of the IgG producing CHO DP12 cell line stably depleted of miR-7. SIGNIFICANCE: Chinese hamster ovary (CHO) cells are the mammalian cell expression system of choice for production of recombinant therapeutic proteins. There is much research ongoing to characterise CHO cell factories through the application of systems biology approaches that will enable a fundamental understanding of CHO cell physiology, and as a result, a better knowledge and understanding of recombinant protein production. This study profiles the proteomic effects of microRNA-7 depletion on the IgG producing CHO DP12 cell line. This is one of the very few studies that attempts to identify the functioning proteins driving improved CHO cell phenotypes resulting from microRNA manipulation. Using subcellular enrichment and total proteome analysis we identified over 5000 unique proteins in miR-7 depleted CHO cells. This work has identified a cohort of proteins involved in the Akt pathway and ribosome biogenesis. These proteins may drive improved CHO cell phenotypes and are of great interest for future work.
Collapse
Affiliation(s)
- Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Srinivas Suda
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Justine Meiller
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Markus Riedl
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Niall Barron
- National Institute for Bioprocessing Research & Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
4
|
Valdés-Bango Curell R, Barron N. Exploring the Potential Application of Short Non-Coding RNA-Based Genetic Circuits in Chinese Hamster Ovary Cells. Biotechnol J 2018; 13:e1700220. [PMID: 29377624 DOI: 10.1002/biot.201700220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/15/2018] [Indexed: 12/14/2022]
Abstract
The majority of cell engineering for recombinant protein production to date has relied on traditional genetic engineering strategies, such as gene overexpression and gene knock-outs, to substantially improve the production capabilities of Chinese Hamster Ovary (CHO) cells. However, further improvements in cellular productivity or control over product quality is likely to require more sophisticated rational approaches to coordinate and balance cellular pathways. For these strategies to be implemented, novel molecular tools need to be developed to facilitate more refined control of gene expression. Multiple gene control strategies are developed over the last decades in the field of synthetic biology, including DNA and RNA-based systems, which allows tight and timely control over gene expression. microRNAs has received a lot of attention over the last decade in the CHO field and are used to engineer and improve CHO cells. In this review we focus on microRNA-based gene control systems and discuss their potential use as tools rather than targets in order to gain better control over gene expression.
Collapse
Affiliation(s)
| | - Niall Barron
- The National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Dublin, Ireland.,University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Romanova N, Noll T. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnol J 2017; 13:e1700232. [DOI: 10.1002/biot.201700232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology; Faculty of Technology; Bielefeld University; Germany
| | - Thomas Noll
- Cell Culture Technology; Faculty of Technology; Bielefeld University; Germany
- Bielefeld University; Center for Biotechnology (CeBiTec); Germany
| |
Collapse
|
6
|
Gebert J, Schnölzer M, Warnken U, Kopitz J. Combining Click Chemistry-Based Proteomics With Dox-Inducible Gene Expression. Methods Enzymol 2016; 585:295-327. [PMID: 28109436 DOI: 10.1016/bs.mie.2016.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inactivating mutations in single genes can trigger, prevent, promote, or alleviate diseases. Identifying such disease-related genes is a main pillar of medical research. Since proteins play a crucial role in mediating these effects, their impact on the diseased cells' proteome including posttranslational modifications has to be elucidated for a detailed understanding of the role of these genes in the disease process. In complex disorders, like cancer, several genes contribute to the disease process, thereby hampering the assignment of a proteomic change to the corresponding causative gene. To enable comprehensive screening for the impact of inactivation of a gene, e.g., loss of a tumor suppressor in cancer, on the cellular proteome, we present a strategy based on combination of three technologies that is recombinase-mediated cassette exchange, click chemistry, and mass spectrometry. The methodology is exemplified by the analysis of the proteomic changes induced by the loss of a tumor suppressor gene in colorectal cancer cells. To demonstrate the applicability to screen for posttranslational modification changes, we also describe the analysis of protein glycosylation changes caused by the tumor suppressor inactivation. In principle, this strategy can be applied to analyze the effects of any gene of interest on protein expression as well as posttranslational modification by glycosylation. Moreover adaptation of the strategy to an appropriate cell culture model has the potential for application on a broad range of diseases where the disease-promoting mutations have been identified.
Collapse
Affiliation(s)
- J Gebert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - U Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Kopitz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Sheikholeslami Z, Jolicoeur M, Henry O. Elucidating the effects of postinduction glutamine feeding on the growth and productivity of CHO cells. Biotechnol Prog 2014; 30:535-46. [PMID: 24692260 DOI: 10.1002/btpr.1907] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/14/2014] [Indexed: 12/11/2022]
Abstract
Inducible mammalian expression systems are increasingly being used for the production of valuable therapeutics. In such system, maximizing the product yield is achieved by carefully balancing the biomass concentration during the production phase and the specific productivity of the cells. These two factors are largely determined by the availability of nutrients and/or the presence of toxic waste metabolites in the culture environment. Glutamine is one of the most important components of cell culture medium, since this substrate is an important building block and source of energy for biomass and recombinant protein production. Its metabolism, however, ultimately leads to the formation of ammonia, a well known inhibitor of cellular growth and productivity. In this work, we show that nutrient feeding post-induction can greatly enhance the product yield by alleviating early limitations encountered in batch. Moreover, varying the amount of glutamine in the feed yielded two distinct culture behaviors post-induction; whereas excess glutamine allowed to reach greater cell concentrations, glutamine-limited fed-batch led to increased cell specific productivity. These two conditions also showed distinctive lactate metabolism. To further assess the physiological impact of glutamine levels on the cells, a comparative (13) C-metabolic flux analysis was conducted and a number of key intracellular fluxes were found to be affected by the amount of glutamine present in the feed during the production phase. Such information may provide useful clues for the identification of physiological markers of cell growth and productivity that could further guide the optimization of inducible expression systems.
Collapse
Affiliation(s)
- Zahra Sheikholeslami
- Dépt. de Génie Chimique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3A7
| | | | | |
Collapse
|
8
|
Santos MG, Jorge SAC, Brillet K, Pereira CA. Improving heterologous protein expression in transfected Drosophila S2 cells as assessed by EGFP expression. Cytotechnology 2007; 54:15-24. [PMID: 19003014 DOI: 10.1007/s10616-007-9060-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 02/13/2007] [Indexed: 10/23/2022] Open
Abstract
Drosophila melanogaster S2 cells were co-transfected with plasmid vectors containing the enhanced green fluorescent protein gene (EGFP), under the control of metallothionein promoter (pMt), and the hygromycin selection gene, in view of establishing parameters for optimized gene expression. A protocol of transfection was worked out, leading after hygromycin selection, to approximately 90% of S2MtEGFP fluorescent cells at day 5 after copper sulfate (CuSO(4)) induction. As analyzed by confocal microscopy, S2MtEGFP cell cultures were shown to be quite heterogeneous regarding the intensity and cell localization of fluorescence among the EGFP expressing cells. Spectrofluorimetry kinetic studies of CuSO(4) induced S2MtEGFP cells showed the EGFP expression at 510 nm as soon as 5 h after induction, the fluorescence increasing progressively from this time to attain values of 4.6 x 10(5) counts/s after 72 h of induction. Induction with 700 muM of CuSO(4) performed at the exponential phase of the S2MtEGFP culture (10(6) cells/mL) led to a better performance in terms of cell growth, percent of fluorescent cells and culture intensity of fluorescence. Sodium butyrate (NaBu) treatment of CuSO(4) induced S2MtEGFP cell cultures, although leading to a loss of cell culture viability, increased the percent of EGFP expressing cells and sharply enhanced the cell culture fluorescence intensity. The present study established parameters for improving heterologous protein expression in stably transfected Drosophila S2 cells, as assessed by the EGFP expression.
Collapse
Affiliation(s)
- Mariza G Santos
- Laboratório de Imunologia Viral, Instituto Butantan, Sao Paulo, Brazil
| | | | | | | |
Collapse
|