1
|
Zhang C, Fu Y, Zheng W, Chang F, Shen Y, Niu J, Wang Y, Ma X. Enhancing the Antibody Production Efficiency of Chinese Hamster Ovary Cells through Improvement of Disulfide Bond Folding Ability and Apoptosis Resistance. Cells 2024; 13:1481. [PMID: 39273052 PMCID: PMC11394227 DOI: 10.3390/cells13171481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The complex structure of monoclonal antibodies (mAbs) expressed in Chinese hamster ovary (CHO) cells may result in the accumulation of unfolded proteins, triggering endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). If the protein folding ability cannot maintain ER homeostasis, the cell will shut down protein translation and ultimately induce apoptosis. We co-overexpressed HsQSOX1b and survivin proteins in the antibody-producing cell line CHO-PAb to obtain a new cell line, CHO-PAb-QS. Compared with CHO-PAb cells, the survival time of CHO-PAb-QS cells in batch culture was extended by 2 days, and the antibody accumulation and productivity were increased by 52% and 45%, respectively. The proportion of (HC-LC)2 was approximately doubled in the CHO-PAb-QS cells, which adapted to the accelerated disulfide bond folding capacity by upregulating the UPR's strength and increasing the ER content. The results of the apoptosis assays indicated that the CHO-PAb-QS cell line exhibited more excellent resistance to apoptosis induced by ER stress. Finally, CHO-PAb-QS cells exhibited mild oxidative stress but did not significantly alter the redox status. This study demonstrated that strategies based on HsQSOX1b and survivin co-overexpression could facilitate protein disulfide bond folding and anti-apoptosis ability, enhancing antibody production efficiency in CHO cell lines.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yunhui Fu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yue Shen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Jinping Niu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yangmin Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| |
Collapse
|
2
|
Pieper LA, Strotbek M, Wenger T, Olayioye MA, Hausser A. ATF6β-based fine-tuning of the unfolded protein response enhances therapeutic antibody productivity of Chinese hamster ovary cells. Biotechnol Bioeng 2017; 114:1310-1318. [PMID: 28165157 DOI: 10.1002/bit.26263] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 01/15/2023]
Abstract
The dynamics of protein folding and secretion are key issues in improving the productivity and robustness of Chinese hamster ovary (CHO) producer cells. High recombinant protein secretion in CHO producer clones triggers the activation of the unfolded protein response (UPR), an intracellular response to the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). We previously reported that the human microRNA (miRNA) miR-1287 enhances productivity in IgG-expressing CHO cells (CHO-IgG). Here, through next-generation sequencing (NGS), we identified the activating transcription factor 6 beta (ATF6β), a repressor of the pro-survival and UPR promoting factor ATF6α, as a direct target gene of miR-1287 in CHO-IgG cells. We show that the transient depletion of ATF6β resulted in enhanced specific productivity comparable to that of miR-1287-expressing CHO-IgG cells. Strikingly, stable ATF6β knockdown in CHO-IgG cells significantly improved antibody titer and viable cell density under fed-batch conditions. This was associated with the elevated expression of the UPR genes glucose-regulated protein 78 (GRP78), homocysteine inducible ER protein with ubiquitin like domain 1 (Herpud1) and CCAAT/enhancer-binding protein homologous protein (CHOP). We hence demonstrate that ATF6β-based cell line engineering is a promising strategy to improve the productivity of CHO producer cells by activating an optimally balanced UPR program. Biotechnol. Bioeng. 2017;114: 1310-1318. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa A Pieper
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michaela Strotbek
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Till Wenger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
3
|
Abstract
Glioblastomas are devastating central nervous system tumors with abysmal prognoses. These tumors are often difficult to resect surgically, are highly invasive and proliferative, and are resistant to virtually all therapeutic attempts, making them universally lethal diseases. One key enabling feature of their tumor biology is the engagement of the unfolded protein response (UPR), a stress response originating in the endoplasmic reticulum (ER) designed to handle the pathologies of aggregating malfolded proteins in that organelle. Glioblastomas and other tumors have co-opted this stress response to allow their continued uncontrolled growth by enhanced protein production (maintained by chaperone-assisted protein folding) and lipid biosynthesis driven downstream of the UPR. These features can account for the extensive extracellular remodeling/invasiveness/angiogenesis and proliferative capacity, and ultimately result in tumor phenotypes of chemo- and radio-resistance. The UPR in general, and its chaperoning capacity in particular, are thus putative high-value targets for treatment intervention. Such therapeutic strategies, and potential problems with them, will be discussed and analyzed.
Collapse
|
4
|
Dynamics of unfolded protein response in recombinant CHO cells. Cytotechnology 2014; 67:237-54. [PMID: 24504562 DOI: 10.1007/s10616-013-9678-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022] Open
Abstract
Genes in the protein secretion pathway have been targeted to increase productivity of monoclonal antibodies in Chinese hamster ovary cells. The results have been highly variable depending on the cell type and the relative amount of recombinant and target proteins. This paper presents a comprehensive study encompassing major components of the protein processing pathway in the endoplasmic reticulum (ER) to elucidate its role in recombinant cells. mRNA profiles of all major ER chaperones and unfolded protein response (UPR) pathway genes are measured at a series of time points in a high-producing cell line under the dynamic environment of a batch culture. An initial increase in IgG heavy chain mRNA levels correlates with an increase in productivity. We observe a parallel increase in the expression levels of majority of chaperones. The chaperone levels continue to increase until the end of the batch culture. In contrast, calreticulin and ERO1-L alpha, two of the lowest expressed genes exhibit transient time profiles, with peak induction on day 3. In response to increased ER stress, both the GCN2/PKR-like ER kinase and inositol-requiring enzyme-1alpha (Ire1α) signalling branch of the UPR are upregulated. Interestingly, spliced X-Box binding protein 1 (XBP1s) transcription factor from Ire1α pathway is detected from the beginning of the batch culture. Comparison with the expression levels in a low producer, show much lower induction at the end of the exponential growth phase. Thus, the unfolded protein response strongly correlates with the magnitude and timing of stress in the course of the batch culture.
Collapse
|
5
|
Nishimiya D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 2013; 98:1031-42. [PMID: 24327213 DOI: 10.1007/s00253-013-5427-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.
Collapse
Affiliation(s)
- Daisuke Nishimiya
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan,
| |
Collapse
|
6
|
Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells. Appl Microbiol Biotechnol 2012; 97:2531-9. [PMID: 22926643 DOI: 10.1007/s00253-012-4365-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/09/2012] [Accepted: 08/12/2012] [Indexed: 10/28/2022]
Abstract
Secretory capacities including folding and assembly are believed to be limiting factors in the establishment of mammalian cell lines producing high levels of recombinant therapeutic proteins. To achieve industrial success, it is also important to improve protein folding, assembly, and secretory processes in combination with increasing transcription and translation. Here, we identified the expression of CHOP/Gadd153 and GRP78, which are unfolded protein response (UPR)-related genes, correlated with recombinant antibody production in stable CHO cells. Subsequently, CHOP overexpression resulted in increasing recombinant antibody production in some mammalian cell lines, and in addition a threefold further enhancement was obtained by combining expression with UPR-related genes or ER chaperones in transient assays. Overexpression of CHOP had no effect on the biochemical characteristics of the product. These results suggest overexpression of CHOP and its combinations may be an effective method to efficiently select a single cell line with a high level of antibody production in the development of cell lines for manufacturing.
Collapse
|
7
|
Mohan C, Sathyamurthy M, Lee GM. A role of GADD153 in ER stress-induced apoptosis in recombinant Chinese hamster ovary cells. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0653-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Masciarelli S, Fra AM, Pengo N, Bertolotti M, Cenci S, Fagioli C, Ron D, Hendershot LM, Sitia R. CHOP-independent apoptosis and pathway-selective induction of the UPR in developing plasma cells. Mol Immunol 2010; 47:1356-65. [PMID: 20044139 PMCID: PMC2830287 DOI: 10.1016/j.molimm.2009.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/26/2009] [Accepted: 12/06/2009] [Indexed: 01/28/2023]
Abstract
Upon antigen stimulation, B lymphocytes differentiate into antibody secreting cells (ASC), most of which undergo apoptosis after a few days of intense Ig production. Differentiation entails expansion of the endoplasmic reticulum (ER) and requires XBP1 but not other elements of the unfolded protein response, like PERK. Moreover, normal and malignant ASC are exquisitely sensitive to proteasome inhibitors, but the underlying mechanisms are poorly understood. Here we analyze the role of C/EBP homologous protein (CHOP), a transcription factor mediating apoptosis in many cell types that experience high levels of ER stress. CHOP is transiently induced early upon B cell stimulation: covalent IgM aggregates form more readily and IgM secretion is slower in chop(-/-) cells. Despite these subtle changes, ASC differentiation and lifespan are normal in chop(-/-) mice. Unlike fibroblasts and other cell types, chop(-/-) ASC are equally or slightly more sensitive to proteasome inhibitors and ER stressors, implying tissue-specific roles for CHOP in differentiation and stress.
Collapse
Affiliation(s)
- Silvia Masciarelli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Anna M. Fra
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | - Niccoló Pengo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Universitá Vita-Salute, San Raffaele Scientific Institute, Milano, Italy
| | - Milena Bertolotti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Universitá Vita-Salute, San Raffaele Scientific Institute, Milano, Italy
| | - Claudio Fagioli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - David Ron
- Skirball Institute of Biomolecular Medicine and the Departments of Cell Biology, Medicine and Pharmacology, New York University School of Medicine, New York, NY, USA
| | | | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Universitá Vita-Salute, San Raffaele Scientific Institute, Milano, Italy
- Institute Curie, Paris, France
| |
Collapse
|
9
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part I: targeting p53, Mdm2, GADD153/CHOP, GRP78/BiP and heat shock proteins. Expert Opin Drug Discov 2009; 4:799-821. [PMID: 23496268 DOI: 10.1517/17460440903052559] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In eukaryotes, endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are coordinately regulated to maintain steady-state levels and activities of various cellular proteins to ensure cell survival. OBJECTIVE This review (Part I of II) focuses on specific ERS and UPR signalling regulators, their expression in the cancer phenotype and apoptosis, and proposes how their implication in these processes can be rationalised into proteasome inhibition, apoptosis induction and the development of more efficacious targeted molecular cancer therapies. METHOD In this review, we contextualise many ERS and UPR client proteins that are deregulated or mutated in cancers and show links between ERS and the UPR, their implication in oncogenic transformation, tumour progression and escape from immune surveillance, apoptosis inhibition, angiogenesis, metastasis, acquired drug resistance and poor cancer prognosis. CONCLUSION Evasion of programmed cell death or apoptosis is a hallmark of cancer that enables tumour cells to proliferate uncontrollably. Successful eradication of cancer cells through targeting ERS- and UPR-associated proteins to induce apoptosis is currently being pursued as a central tenet of anticancer drug discovery.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 21 959 1563 ;
| | | |
Collapse
|
10
|
Khan SU, Schröder M. Engineering of chaperone systems and of the unfolded protein response. Cytotechnology 2008; 57:207-31. [PMID: 19003179 PMCID: PMC2570002 DOI: 10.1007/s10616-008-9157-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/18/2008] [Indexed: 12/19/2022] Open
Abstract
Production of recombinant proteins in mammalian cells is a successful technology that delivers protein pharmaceuticals for therapies and for diagnosis of human disorders. Cost effective production of protein biopharmaceuticals requires extensive optimization through cell and fermentation process engineering at the upstream and chemical engineering of purification processes at the downstream side of the production process. The majority of protein pharmaceuticals are secreted proteins. Accumulating evidence suggests that the folding and processing of these proteins in the endoplasmic reticulum (ER) is a general rate- and yield limiting step for their production. We will summarize our knowledge of protein folding in the ER and of signal transduction pathways activated by accumulation of unfolded proteins in the ER, collectively called the unfolded protein response (UPR). On the basis of this knowledge we will evaluate engineering approaches to increase cell specific productivities through engineering of the ER-resident protein folding machinery and of the UPR.
Collapse
Affiliation(s)
- Saeed U. Khan
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Martin Schröder
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE UK
| |
Collapse
|
11
|
Mallory M, Chartrand K, Gauthier ER. GADD153 expression does not necessarily correlate with changes in culture behavior of hybridoma cells. BMC Biotechnol 2007; 7:89. [PMID: 18070358 PMCID: PMC2222238 DOI: 10.1186/1472-6750-7-89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/10/2007] [Indexed: 11/11/2022] Open
Abstract
Background The acute sensitivity of some hybridoma cell lines to culture-related stresses severely limits their productivity. Recent developments in the characterization of the stress signals modulating the cellular phenotype revealed that the pro-apoptotic transcription factor Gadd153 could be used as a marker to facilitate the optimization of mammalian cell cultures. In this report, we analyzed the expression of Gadd153 in Sp2/0-Ag14 murine hybridoma cells grown in stationary batch culture and subjected to two different culture optimization paradigms: L-glutamine supplementation and ectopic expression of Bcl-xL, an anti-apoptotic gene. Results The expression of Gadd153 was found to increase in Sp2/0-Ag14 cells in a manner which coincided with the decline in cell viability. L-glutamine supplementation prolonged Sp2/0-Ag14 cell survival and greatly suppressed Gadd153 expression both at the mRNA and protein level. However, Gadd153 levels remained low after L-glutamine supplementation even as cell viability declined. Bcl-xL overexpression also extended Sp2/0-Ag14 cell viability, initially delayed the induction of Gadd153, but did not prevent the increase in Gadd153 protein levels during the later phase of the culture, when cell viability was declining. Interestingly, L-glutamine supplementation prevented Gadd153 up-regulation in cells ectopically expressing Bcl-xL, but had no effect on cell viability. Conclusion This study highlights important limitations to the use of Gadd153 as an indicator of cell stress in hybridoma cells.
Collapse
Affiliation(s)
- Matthew Mallory
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada.
| | | | | |
Collapse
|