1
|
Klafke K, Sanches MM, Sihler W, de Souza ML, Tonso A. Bioreactor Production Process of Spodoptera frugiperda multiple nucleopolyhedrovirus Biopesticide. Pathogens 2023; 12:1001. [PMID: 37623961 PMCID: PMC10457946 DOI: 10.3390/pathogens12081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Spodoptera frugiperda (fall armyworm) is one of the most important maize pests in the world and the baculovirus Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), a natural pathogen of this pest, has been used as a biopesticide for its control. At present, in vivo strategies at the commercial scale are employed by multiplying the virus in the host insect in biofactory facilities; however, in vitro large-scale production is an interesting alternative to overcome the limitations of baculoviruses massal production. This study aimed to develop the process of the SfMNPV in vitro production by evaluating the effects of different multiplicities of infection (MOI) and nutritional supplements, morphological and molecular analysis of the infection on the growth of Sf9 cells and virus production. The Bioreactor Stirred Tank Reactor (STR) approach with glutamine-supplemented Sf-900 III serum free culture medium, combined with the MOI of 1.0, showed the best viral production performance, with a specific productivity above 300 occlusion bodies (OBs)/cell and volumetric productivity of 9.0 × 1011 OBs/L.
Collapse
Affiliation(s)
- Karina Klafke
- Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo 05508-010, SP, Brazil;
| | | | - William Sihler
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia 70770-917, DF, Brazil; (W.S.); (M.L.d.S.)
| | - Marlinda Lobo de Souza
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia 70770-917, DF, Brazil; (W.S.); (M.L.d.S.)
| | - Aldo Tonso
- Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo 05508-010, SP, Brazil;
| |
Collapse
|
2
|
Käßer L, Rotter M, Coletta L, Salzig D, Czermak P. Process intensification for the continuous production of an antimicrobial peptide in stably-transformed Sf-9 insect cells. Sci Rep 2022; 12:1086. [PMID: 35058492 PMCID: PMC8776851 DOI: 10.1038/s41598-022-04931-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2023] Open
Abstract
The antibiotic resistance crisis has prompted research into alternative candidates such as antimicrobial peptides (AMPs). However, the demand for such molecules can only be met by continuous production processes, which achieve high product yields and offer compatibility with the Quality-by-Design initiative by implementing process analytical technologies such as turbidimetry and dielectric spectroscopy. We developed batch and perfusion processes at the 2-L scale for the production of BR033, a cecropin-like AMP from Lucilia sericata, in stably-transformed polyclonal Sf-9 cells. This is the first time that BR033 has been expressed as a recombinant peptide. Process analytical technology facilitated the online monitoring and control of cell growth, viability and concentration. The perfusion process increased productivity by ~ 180% compared to the batch process and achieved a viable cell concentration of 1.1 × 107 cells/mL. Acoustic separation enabled the consistent retention of 98.5–100% of the cells, viability was > 90.5%. The recombinant AMP was recovered from the culture broth by immobilized metal affinity chromatography and gel filtration and was able to inhibit the growth of Escherichia coli K12. These results demonstrate a successful, integrated approach for the development and intensification of a process from cloning to activity testing for the production of new biopharmaceutical candidates.
Collapse
|
3
|
An overview of drive systems and sealing types in stirred bioreactors used in biotechnological processes. Appl Microbiol Biotechnol 2021; 105:2225-2242. [PMID: 33649923 PMCID: PMC7954712 DOI: 10.1007/s00253-021-11180-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022]
Abstract
No matter the scale, stirred tank bioreactors are the most commonly used systems in biotechnological production processes. Single-use and reusable systems are supplied by several manufacturers. The type, size, and number of impellers used in these systems have a significant influence on the characteristics and designs of bioreactors. Depending on the desired application, classic shaft-driven systems, bearing-mounted drives, or stirring elements that levitate freely in the vessel may be employed. In systems with drive shafts, process hygiene requirements also affect the type of seal used. For sensitive processes with high hygienic requirements, magnetic-driven stirring systems, which have been the focus of much research in recent years, are recommended. This review provides the reader with an overview of the most common agitation and seal types implemented in stirred bioreactor systems, highlights their advantages and disadvantages, and explains their possible fields of application. Special attention is paid to the development of magnetically driven agitators, which are widely used in reusable systems and are also becoming more and more important in their single-use counterparts. Key Points • Basic design of the most frequently used bioreactor type: the stirred tank bioreactor • Differences in most common seal types in stirred systems and fields of application • Comprehensive overview of commercially available bioreactor seal types • Increased use of magnetically driven agitation systems in single-use bioreactors
Collapse
|
4
|
Sequeira DP, Correia R, Carrondo MJT, Roldão A, Teixeira AP, Alves PM. Combining stable insect cell lines with baculovirus-mediated expression for multi-HA influenza VLP production. Vaccine 2017; 36:3112-3123. [PMID: 28291648 DOI: 10.1016/j.vaccine.2017.02.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 01/08/2023]
Abstract
Safer and broadly protective vaccines are needed to cope with the continuous evolution of circulating influenza virus strains and promising approaches based on the expression of multiple hemagglutinins (HA) in a virus-like particle (VLP) have been proposed. However, expression of multiple genes in the same vector can lead to its instability due to tandem repetition of similar sequences. By combining stable with transient expression systems we can rationally distribute the number of genes to be expressed per platform and thus mitigate this risk. In this work, we developed a modular system comprising stable and baculovirus-mediated expression in insect cells for production of multi-HA influenza enveloped VLPs. First, a stable insect High Five cell population expressing two different HA proteins from subtype H3 was established. Infection of this cell population with a baculovirus vector encoding three other HA proteins from H3 subtype proved to be as competitive as traditional co-infection approaches in producing a pentavalent H3 VLP. Aiming at increasing HA expression, the stable insect cell population was infected at increasingly higher cell concentrations (CCI). However, cultures infected at CCI of 3×106cells/mL showed lower HA titers per cell in comparison to standard CCI of 2×106cells/mL, a phenomenon named "cell density effect". To lessen the negative impact of this phenomenon, a tailor-made refeed strategy was designed based on the exhaustion of key nutrients during cell growth. Noteworthy, cultures supplemented and infected at a CCI of 4×106cells/mL showed comparable HA titers per cell to those of CCI of 2×106cells/mL, thus leading to an increase of up to 4-fold in HA titers per mL. Scalability of the modular strategy herein proposed was successfully demonstrated in 2L stirred tank bioreactors with comparable HA protein levels observed between bioreactor and shake flasks cultures. Overall, this work demonstrates the suitability of combining stable with baculovirus-mediated expression in insect cells as an efficient platform for production of multi-HA influenza VLPs, surpassing the drawbacks of traditional co-infection strategies and/or the use of larger, unstable vectors.
Collapse
Affiliation(s)
- Daniela P Sequeira
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal.
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal.
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
5
|
Harrison RL, Jarvis DL. Transforming Lepidopteran Insect Cells for Continuous Recombinant Protein Expression. Methods Mol Biol 2016; 1350:329-48. [PMID: 26820866 DOI: 10.1007/978-1-4939-3043-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant proteins. However, the yields of extracellular and membrane-bound proteins obtained with this system are often very low, possibly due to the adverse effects of baculovirus infection on the host insect cell secretory pathway. An alternative approach to producing poorly expressed proteins is to transform lepidopteran insect cells with the gene of interest under the control of promoters that are constitutively active in uninfected cells, thereby making cell lines that continuously express recombinant protein. This chapter provides an overview of the methods and considerations for making stably transformed lepidopteran insect cells. Techniques for the insertion of genes into continuous expression vectors, transfection of cells, and the selection and isolation of stably transformed Sf-9 clones by either colony formation or end-point dilution are described in detail.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol & Behavior Laboratory, USDA, ARS, BARC, Building 007, Room 301, BARC-W, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
6
|
Recombinant Protein Production in Large-Scale Agitated Bioreactors Using the Baculovirus Expression Vector System. Methods Mol Biol 2016; 1350:241-61. [PMID: 26820861 DOI: 10.1007/978-1-4939-3043-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The production of recombinant proteins using the baculovirus expression vector system (BEVS) in large-scale agitated bioreactors is discussed in this chapter. Detailed methods of the key stages of a batch process, including host cell growth, virus stock amplification and quantification, bioreactor preparation and operation, the infection process, final harvesting, and primary separation steps for recovery of the product are presented. Furthermore, methods involved with advanced on-line monitoring and bioreactor control, which have a significant impact on the overall process success, are briefly discussed.
Collapse
|
7
|
Abstract
Baculovirus-based Insect Cell Technology (ICT) is widely used for the expression of recombinant heterologous proteins and baculovirus bioinsecticides, and has recently gained momentum as a commercial manufacturing platform for human and veterinary vaccines. The three key components of ICT are the Lepidopteran insect cell line, the baculovirus vector, and the growth medium. Insect cell growth media have evolved significantly in the past five decades, from basal media supplemented with hemolymph or animal serum, to highly optimized serum-free media and feeds (SFM and SFF) capable of supporting very high cell densities and recombinant protein yields. The substitution of animal sera with protein hydrolysates in SFM results in greatly reduced medium costs and much improved process scalability. However, both sera and hydrolysates share the disadvantage of lot-to-lot variability, which is detrimental to process reproducibility. Hence, the industrialization of ICT would benefit greatly from chemically defined media (CDM) for insect cells, which are not yet commercially available. On the other hand, applications such as baculovirus bioinsecticides would need truly low cost serum-free media and feeds (LC-SFM and LC-SFF) for economic viability, which require the substitution of a majority of expensive added amino acids with even higher levels of hydrolysates, hence increasing the risk of a variable process. CDM developments are anticipated to benefit both conventional and low cost ICT applications, by identifying key growth factors in hydrolysates for more targeted media and feed design.
Collapse
Affiliation(s)
| | - Steven Reid
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
|
9
|
Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 2014; 30:1-18. [PMID: 24265112 DOI: 10.1002/btpr.1842] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/21/2022]
Abstract
The baculovirus-insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed.
Collapse
|
10
|
Single-use wave-mixed versus stirred bioreactors for insect-cell/BEVS-based protein expression at benchtop scale. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Production of rotavirus core-like particles in Sf9 cells using recombinase-mediated cassette exchange. J Biotechnol 2014; 171:34-8. [DOI: 10.1016/j.jbiotec.2013.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022]
|
12
|
Yamaji H. Suitability and perspectives on using recombinant insect cells for the production of virus-like particles. Appl Microbiol Biotechnol 2014; 98:1963-70. [PMID: 24407451 DOI: 10.1007/s00253-013-5474-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
Abstract
Virus-like particles (VLPs) can be produced in recombinant protein production systems by expressing viral surface proteins that spontaneously assemble into particulate structures similar to authentic viral or subviral particles. VLPs serve as excellent platforms for the development of safe and effective vaccines and diagnostic antigens. Among various recombinant protein production systems, the baculovirus-insect cell system has been used extensively for the production of a wide variety of VLPs. This system is already employed for the manufacture of a licensed human papillomavirus-like particle vaccine. However, the baculovirus-insect cell system has several inherent limitations including contamination of VLPs with progeny baculovirus particles. Stably transformed insect cells have emerged as attractive alternatives to the baculovirus-insect cell system. Different types of VLPs, with or without an envelope and composed of either single or multiple structural proteins, have been produced in stably transformed insect cells. VLPs produced by stably transformed insect cells have successfully elicited immune responses in vivo. In some cases, the yield of VLPs attained with recombinant insect cells was comparable to, or higher than, that obtained by baculovirus-infected insect cells. Recombinant insect cells offer a promising approach to the development and production of VLPs.
Collapse
Affiliation(s)
- Hideki Yamaji
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan,
| |
Collapse
|
13
|
Clincke MF, Mölleryd C, Samani PK, Lindskog E, Fäldt E, Walsh K, Chotteau V. Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE Bioreactor™-part II: Applications for antibody production and cryopreservation. Biotechnol Prog 2013; 29:768-77. [PMID: 23436783 PMCID: PMC3752935 DOI: 10.1002/btpr.1703] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/11/2013] [Indexed: 01/20/2023]
Abstract
A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013
Collapse
Affiliation(s)
- Marie-Françoise Clincke
- School of Biotechnology, Cell Technology Group, KTH (Royal Institute of Technology), Stockholm, SE-10691, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Adaptation of the Spodoptera exigua Se301 insect cell line to grow in serum-free suspended culture. Comparison of SeMNPV productivity in serum-free and serum-containing media. Appl Microbiol Biotechnol 2012. [DOI: 10.1007/s00253-012-4576-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Rausch M, Pörtner R, Knäblein J. Increase of Protein Yield in High Five Cells in a Single-Use Perfusion Bioreactor by Medium Replacement. CHEM-ING-TECH 2012. [DOI: 10.1002/cite.201200121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Abstract
There are many methods presently available to produce recombinant proteins in mammalian systems. The BacMam system is a simple straightforward method which overlaps two well-established technologies, namely the BEVS insect cell system and the transduction of mammalian cells in vitro. This chapter describes a method for the study of gene expression in mammalian cells in a series of simple steps. Protocols outlined include the design and construction of the recombinant baculovirus, cell culture techniques required to maintain both insect and mammalian cells, generation of baculovirus stocks, and methods to obtain maximal and reproducible gene expression in mammalian cells. Currently available statistical techniques using factorial design of experiment to optimize conditions for recombinant protein in vitro are outlined. Then details with respect to process scale-up in disposable bioreactors are included.
Collapse
|
17
|
|
18
|
Paul A, Jardin BA, Kulamarva A, Malhotra M, Elias CB, Prakash S. Recombinant baculovirus as a highly potent vector for gene therapy of human colorectal carcinoma: molecular cloning, expression, and in vitro characterization. Mol Biotechnol 2010; 45:129-39. [PMID: 20143184 DOI: 10.1007/s12033-010-9248-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Present therapeutic strategies for most cancers are restricted mainly to the primary tumors and are also not very effective in controlling metastatic states. Alternatively, gene therapy can be a potential option for treating such cancers. Currently mammalian viral-based cancer gene therapy is the most popular approach, but the efficacy has been shown to be quite low in clinical trials. In this study, for the first time, the insect cell-specific baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been evaluated as a vector for gene delivery to colorectal cancer cells. Experiments involving factorial design were employed to study the individual and combined effects of different parameters such as multiplicity of infection (MOI), viral incubation time and epigenetic factors on transduction efficiency. The results demonstrate that baculovirus gene delivery system holds immense potential for development of a new generation of highly effective virotherapy for colorectal, as well as other major carcinomas (breast, pancreas, and brain), and offers significant benefits to traditional animal virus-based vectors with respect to safety concerns.
Collapse
Affiliation(s)
- Arghya Paul
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Liu YK, Yang CJ, Liu CL, Shen CR, Shiau LD. Using a fed-batch culture strategy to enhance rAAV production in the baculovirus/insect cell system. J Biosci Bioeng 2010; 110:187-93. [DOI: 10.1016/j.jbiosc.2010.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 02/05/2010] [Accepted: 02/06/2010] [Indexed: 11/28/2022]
|
20
|
|
21
|
Yamaji H, Manabe T, Watakabe K, Muraoka M, Fujii I, Fukuda H. Production of functional antibody Fab fragment by recombinant insect cells. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|