1
|
Le Montagner P, Bakhtiar Y, Miot-Sertier C, Guilbaud M, Albertin W, Moine V, Dols-Lafargue M, Masneuf-Pomarède I. Effect of abiotic and biotic factors on Brettanomyces bruxellensis bioadhesion properties. Food Microbiol 2024; 120:104480. [PMID: 38431326 DOI: 10.1016/j.fm.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Biofilms are central to microbial life because of the advantage that this mode of life provides, whereas the planktonic form is considered to be transient in the environment. During the winemaking process, grape must and wines host a wide diversity of microorganisms able to grow in biofilm. This is the case of Brettanomyces bruxellensis considered the most harmful spoilage yeast, due to its negative sensory effect on wine and its ability to colonise stressful environments. In this study, the effect of different biotic and abiotic factors on the bioadhesion and biofilm formation capacities of B. bruxellensis was analyzed. Ethanol concentration and pH had negligible effect on yeast surface properties, pseudohyphal cell formation or bioadhesion, while the strain and genetic group factors strongly modulated the phenotypes studied. From a biotic point of view, the presence of two different strains of B. bruxellensis did not lead to a synergistic effect. A competition between the strains was rather observed during biofilm formation which seemed to be driven by the strain with the highest bioadhesion capacity. Finally, the presence of wine bacteria reduced the bioadhesion of B. bruxellensis. Due to biofilm formation, O. oeni cells were observed attached to B. bruxellensis as well as extracellular matrix on the surface of the cells.
Collapse
Affiliation(s)
- Paul Le Montagner
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Biolaffort, Floirac, France
| | - Yacine Bakhtiar
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Cecile Miot-Sertier
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Morgan Guilbaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
| | - Warren Albertin
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSMAC, Bordeaux INP, 33600, Pessac, France
| | | | - Marguerite Dols-Lafargue
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSMAC, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Bordeaux Sciences Agro, 33175, Gradignan, France.
| |
Collapse
|
2
|
Mohamad Sukri N, Abdul Manas NH, Jaafar NR, A Rahman R, Abdul Murad AM, Md Illias R. Effects of electrospun nanofiber fabrications on immobilization of recombinant Escherichia coli for production of xylitol from glucose. Enzyme Microb Technol 2024; 172:110350. [PMID: 37948908 DOI: 10.1016/j.enzmictec.2023.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
A suitable nanofiber sheet was formulated and developed based on its efficacy in the immobilization of recombinant Escherichia coli (E. coli) to enhance xylitol production. The effects of different types of nanofibers and solvents on cell immobilization and xylitol production were studied. The most applicable nanofiber membrane was selected via preliminary screening of four types of nanofiber membrane, followed by the selection of six different solvents. Polyvinylidene fluoride (PVDF) nanofiber sheet synthesized using dimethylformamide (DMF) solvent was found to be the most suitable carrier for immobilization and xylitol production. The thin, beaded PVDF (DMF) nanofibers were more favourable for microbial adhesion, with the number of immobilized cells as high as 96 × 106 ± 3.0 cfu/ml. The attraction force between positively charged PVDF nanofibers and the negatively charged E. coli indicates that the electrostatic interaction plays a significant role in cell adsorption. The use of DMF has also produced PVDF nanofibers biocatalyst capable of synthesizing the highest xylitol concentration (2.168 g/l) and productivity (0.090 g/l/h) and 55-69% reduction in cell lysis compared with DMSO solvent and free cells. This finding suggests that recombinant E. coli immobilized on nanofibers shows great potential as a whole-cell biocatalyst for xylitol production.
Collapse
Affiliation(s)
- Norhamiza Mohamad Sukri
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
3
|
Mozaheb N, Rasouli P, Kaur M, Van Der Smissen P, Larrouy-Maumus G, Mingeot-Leclercq MP. A Mildly Acidic Environment Alters Pseudomonas aeruginosa Virulence and Causes Remodeling of the Bacterial Surface. Microbiol Spectr 2023; 11:e0483222. [PMID: 37278652 PMCID: PMC10433952 DOI: 10.1128/spectrum.04832-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Pseudomonas aeruginosa is a versatile pathogen that resists environmental stress, such as suboptimal pH. As a result of exposure to environmental stress, P. aeruginosa shows an altered virulence-related phenotype. This study investigated the modifications that P. aeruginosa undertakes at a mildly low pH (pH 5.0) compared with the bacteria grown in a neutral medium (pH 7.2). Results indicated that in a mildly acidic environment, expression of two-component system genes (phoP/phoQ and pmrA/pmrB), lipid A remodeling genes such as arnT and pagP and virulence genes, i.e., pqsE and rhlA, were induced. Moreover, lipid A of the bacteria grown at a mildly low pH is modified by adding 4-amino-arabinose (l-Ara4N). Additionally, the production of virulence factors such as rhamnolipid, alginate, and membrane vesicles is significantly higher in a mildly low-pH environment than in a neutral medium. Interestingly, at a mildly low pH, P. aeruginosa produces a thicker biofilm with higher biofilm biomass. Furthermore, studies on inner membrane viscosity and permeability showed that a mildly low pH causes a decrease in the inner membrane permeability and increases its viscosity. Besides, despite the importance of PhoP, PhoQ, PmrA, and PmrB in Gram-negative bacteria for responding to low pH stress, we observed that the absence of each of these two-component systems does not meaningfully impact the remodeling of the P. aeruginosa envelope. Given that P. aeruginosa is likely to encounter mildly acidic environments during infection in its host, the alterations that the bacterium undertakes under such conditions must be considered in designing antibacterial strategies against P. aeruginosa. IMPORTANCE P. aeruginosa encounters environments with acidic pH when establishing infections in hosts. The bacterium develops an altered phenotype to tolerate a moderate decrease in the environmental pH. At the level of the bacterial envelope, modified lipid A composition and a reduction of the bacterial inner membrane permeability and fluidity are among the changes P. aeruginosa undergoes at a mildly low pH. Also, the bacterium is more likely to form biofilm in a mildly acidic environment. Overall, these alterations in the P. aeruginosa phenotype put obstacles in the way of antibacterial activities. Thus, considering physiological changes in the bacterium at low pH helps design and implement antimicrobial approaches against this hostile microorganism.
Collapse
Affiliation(s)
- Negar Mozaheb
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Paria Rasouli
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Mandeep Kaur
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Patrick Van Der Smissen
- Université catholique de Louvain, de Duve Institute, CELL Unit and PICT Platform, Brussels, Belgium
| | - Gerald Larrouy-Maumus
- Imperial College London, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Faculty of Natural Science, London, United Kingdom
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| |
Collapse
|
4
|
O’Malley MR, Kpenu E, Peck SC, Anderson JC. Plant-exuded chemical signals induce surface attachment of the bacterial pathogen Pseudomonas syringae. PeerJ 2023; 11:e14862. [PMID: 37009160 PMCID: PMC10062345 DOI: 10.7717/peerj.14862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
Many plant pathogenic bacteria suppress host defenses by secreting small molecule toxins or immune-suppressing proteins into host cells, processes that likely require close physical contact between pathogen and host. Yet, in most cases, little is known about whether phytopathogenic bacteria physically attach to host surfaces during infection. Here we report that Pseudomonas syringae pv. tomato strain DC3000, a Gram-negative bacterial pathogen of tomato and Arabidopsis, attaches to polystyrene and glass surfaces in response to chemical signals exuded from Arabidopsis seedlings and tomato leaves. We characterized the molecular nature of these attachment-inducing signals and discovered that multiple hydrophilic metabolites found in plant exudates, including citric acid, glutamic acid, and aspartic acid, are potent inducers of surface attachment. These same compounds were previously identified as inducers of P. syringae genes encoding a type III secretion system (T3SS), indicating that both attachment and T3SS deployment are induced by the same plant signals. To test if surface attachment and T3SS are regulated by the same signaling pathways, we assessed the attachment phenotypes of several previously characterized DC3000 mutants, and found that the T3SS master regulator HrpL was partially required for maximal levels of surface attachment, whereas the response regulator GacA, a negative regulator of T3SS, negatively regulated DC3000 surface attachment. Together, our data indicate that T3SS deployment and surface attachment by P. syringae may be co-regulated by the same host signals during infection, possibly to ensure close contact necessary to facilitate delivery of T3SS effectors into host cells.
Collapse
Affiliation(s)
- Megan R. O’Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Eyram Kpenu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Scott C. Peck
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
5
|
Signaling events that occur when cells of Escherichia coli encounter a glass surface. Proc Natl Acad Sci U S A 2022; 119:2116830119. [PMID: 35131853 PMCID: PMC8833168 DOI: 10.1073/pnas.2116830119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Microbial cells organized on solid surfaces are the most ancient form of biological communities. Yet how single cells interact with surfaces and integrate a variety of signals to establish a sessile lifestyle is poorly understood. We developed and used sensitive biosensors to determine the kinetics of second messengers’ responses to surface attachment. This allowed us to examine cell-by-cell variability of the initial signaling events and establish that some of these events depend on flagellar motor function while others do not. Environmentally determined factors, like the energetic status of the cell, can modulate all signaling events. The complex interplay between the surface interaction inputs and external conditions can now be studied using our system. Bacterial cells interact with solid surfaces and change their lifestyle from single free-swimming cells to sessile communal structures (biofilms). Cyclic di-guanosine monophosphate (c-di-GMP) is central to this process, yet we lack tools for direct dynamic visualization of c-di-GMP in single cells. Here, we developed a fluorescent protein–based c-di-GMP–sensing system for Escherichia coli that allowed us to visualize initial signaling events and assess the role played by the flagellar motor. The sensor was pH sensitive, and the events that appeared on a seconds’ timescale were alkaline spikes in the intracellular pH. These spikes were not apparent when signals from different cells were averaged. Instead, a signal appeared on a minutes’ timescale that proved to be due to an increase in intracellular c-di-GMP. This increase, but not the alkaline spikes, depended upon a functional flagellar motor. The kinetics and the amplitude of both the pH and c-di-GMP responses displayed cell-to-cell variability indicative of the distinct ways the cells approached and interacted with the surface. The energetic status of a cell can modulate these events. In particular, the alkaline spikes displayed an oscillatory behavior and the c-di-GMP increase was modest in the presence of glucose.
Collapse
|
6
|
Kimkes TEP, Heinemann M. How bacteria recognise and respond to surface contact. FEMS Microbiol Rev 2020; 44:106-122. [PMID: 31769807 PMCID: PMC7053574 DOI: 10.1093/femsre/fuz029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial biofilms can cause medical problems and issues in technical systems. While a large body of knowledge exists on the phenotypes of planktonic and of sessile cells in mature biofilms, our understanding of what happens when bacteria change from the planktonic to the sessile state is still very incomplete. Fundamental questions are unanswered: for instance, how do bacteria sense that they are in contact with a surface, and what are the very initial cellular responses to surface contact. Here, we review the current knowledge on the signals that bacteria could perceive once they attach to a surface, the signal transduction systems that could be involved in sensing the surface contact and the cellular responses that are triggered as a consequence to surface contact ultimately leading to biofilm formation. Finally, as the main obstacle in investigating the initial responses to surface contact has been the difficulty to experimentally study the dynamic response of single cells upon surface attachment, we also review recent experimental approaches that could be employed to study bacterial surface sensing, which ultimately could lead to an improved understanding of how biofilm formation could be prevented.
Collapse
Affiliation(s)
- Tom E P Kimkes
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|
7
|
Brown DG, Zhu H, Albert LS, Fox JT. Rapid Characterization and Modeling of Natural and Undefined Charge-Regulated Surfaces in Aqueous Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14083-14091. [PMID: 31584831 DOI: 10.1021/acs.langmuir.9b02265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The surfaces of most materials in aqueous systems are charged due to the ionization of surface functional groups. When these surfaces interact, the surface charge, electrostatic potential, and pH will vary as a function of separation distance, and this process is termed the charge-regulation effect. Charge regulation is a controlling factor in the adhesion and transport of colloids and microorganisms in aqueous systems, and its modeling requires representation of the pH-charge response of the surfaces, typically provided as the equilibrium constants (K) and site densities (N) of the dominant surface functional groups. Existing methods for obtaining these parameters demonstrate shortcomings when applied to many natural and man-made materials, such as weathered materials, materials with undefined or complex surface structures, and permeable materials, and for materials that do not provide the requisite high surface area in suspension due to small sample sizes. This hinders inclusion of the charge-regulation effect in colloid and microbial transport studies, and most studies of colloidal and microbial surface interactions use simplifying assumptions; a key example is the routine use of the constant potential assumption in DLVO modeling. Here we present a robust method that overcomes these issues and provides a rapid means to characterize charge-regulated surfaces using zeta potential data, without requiring a priori knowledge of the material composition. Applying a combined charge-regulation and Gouy-Chapman model, K and N values are obtained that accurately represent the electrostatic response of a charge-regulated surface. This method is demonstrated using activated carbon, aluminum oxide, iron (hydr)oxide, feldspar, and silica sand. The resulting K and N values are then used to show the variations in surface charge, electrostatic potential, and pH that can occur as these charge-regulated surfaces interact. This method provides a readily applied experimental approach for characterizing charge-regulated surfaces, with the overall goal to promote the inclusion of charge-regulated interactions into adhesion and transport studies with natural and undefined materials.
Collapse
Affiliation(s)
- Derick G Brown
- Department of Civil & Environmental Engineering , Lehigh University , 1 West Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Hankai Zhu
- Department of Civil & Environmental Engineering , Lehigh University , 1 West Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Lynal S Albert
- Department of Civil & Environmental Engineering , Lehigh University , 1 West Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - John T Fox
- Department of Civil & Environmental Engineering , Lehigh University , 1 West Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
8
|
The Rcs-Regulated Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar Typhimurium. mBio 2017; 8:mBio.00808-17. [PMID: 28588134 PMCID: PMC5461412 DOI: 10.1128/mbio.00808-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. Colanic acid is a negatively charged polysaccharide capsule produced by Escherichia coli, Salmonella, and other gammaproteobacteria. Research conducted over the 50 years since the discovery of colanic acid suggests that this exopolysaccharide plays an important role for bacteria living in biofilms. However, a precise physiological role for colanic acid has not been defined. In this study, we provide evidence that colanic acid maintains the transmembrane potential and proton motive force during envelope stress. This work provides a new and fundamental insight into bacterial physiology.
Collapse
|
9
|
Nilsson RE, Ross T, Bowman JP, Britz ML. MudPIT profiling reveals a link between anaerobic metabolism and the alkaline adaptive response of Listeria monocytogenes EGD-e. PLoS One 2013; 8:e54157. [PMID: 23342094 PMCID: PMC3544664 DOI: 10.1371/journal.pone.0054157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/10/2012] [Indexed: 11/29/2022] Open
Abstract
Listeria monocytogenes is a foodborne human pathogen capable of causing life-threatening disease in susceptible populations. Previous proteomic analysis we performed demonstrated that different strains of L. monocytogenes initiate a stringent response when subjected to alkaline growth conditions. Here, using multidimensional protein identification technology (MudPIT), we show that in L. monocytogenes EGD-e this response involves an energy shift to anaerobic pathways in response to the extracellular pH environment. Importantly we show that this supports a reduction in relative lag time following an abrupt transition to low oxygen tension culture conditions. This has important implications for the packaging of fresh and ready-to-eat foods under reduced oxygen conditions in environments where potential exists for alkaline adaptation.
Collapse
Affiliation(s)
- Rolf E Nilsson
- Food Safety Centre, Tasmanian Institute of Agriculture, School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | |
Collapse
|