1
|
Hua P, Huang Q, Wang Z, Jiang S, Gao F, Zhang J, Ying GG. Impact of physicochemical and microbial drivers on the formation of disinfection by-products in drinking water distribution systems: A multivariate Bayesian network modeling approach. WATER RESEARCH 2025; 273:123001. [PMID: 39733531 DOI: 10.1016/j.watres.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
The formation of disinfection byproducts (DBPs) in drinking water distribution systems (DWDS) is significantly affected by numerous factors, including physicochemical water properties, microbial community composition and structure, and the characteristics of organic DBP precursors. However, the codependence of various factors remains unclear, particularly the contribution of microbial-derived organics to DBP formation, which has been inadequately explored. Herein, we present a Bayesian network modeling framework incorporating a Bayesian-based microbial source tracking method and excitation-emission fluorescence spectroscopy-parallel factor analysis to capture the critical drivers influencing DBP formation and explore their interactions. The results showed that the planktonic and suspended particle-associated bacteria in tap water mainly originated from bacteria in the treated water. Protein- and tryptophan-like fluorescence components were identified, illustrating their contribution to DBP formation cannot be ignored. The microbial abundance of Actinobacteria, Bacilli, and Bacteroidia is significantly related to the formation of trihalomethanes, haloacetic acids, and N-nitrosamines. These findings highlight the necessity for prioritizing management policies to control biofilm formation and minimize DBP formation in DWDSs.
Collapse
Affiliation(s)
- Pei Hua
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Qiuyun Huang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhenyu Wang
- Department Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Shanshan Jiang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fangzhou Gao
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, 210098 Nanjing, China
| | - Guang-Guo Ying
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
2
|
Cupples AM. Propane Monooxygenases in Soil Associated Metagenomes Align Most Closely to those in the Genera Kribbella, Amycolatopsis, Bradyrhizobium, Paraburkholderia and Burkholderia. Curr Microbiol 2024; 81:314. [PMID: 39162848 DOI: 10.1007/s00284-024-03829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Propanotrophs are a focus of interest because of their ability to degrade numerous environmental contaminants. To explore the phylogeny of microorganisms containing the propane monooxygenase gene cluster (prmABCD), NCBI bacterial genomes and publicly available soil associated metagenomes (from soils, rhizospheres, tree roots) were both examined. Nucleic acid sequences were collected only if all four subunits were located together, were of the expected length and were annotated as propane monooxygenase subunits. In the bacterial genomes, this resulted in data collection only from the phyla Actinomycetota and Pseudomonadota. For the soil associated metagenomes, reads from four studies were subject to quality control, assembly and annotation. Following this, the propane monooxygenase subunit nucleic acid sequences were collected and aligned to the collected bacterial sequences. In total, forty-two propane monooxygenase gene clusters were annotated from the soil associated metagenomes. The majority aligned closely to those from the Actinomycetota, followed by the Alphaproteobacteria, then the Betaproteobacteria. Actinomycetota aligning propane monooxygenase sequences were obtained from all four datasets and most closely aligned to the genera Kribbella and Amycolatopsis. Alphaproteobacteria aligning sequences largely originated from metagenomes associated with miscanthus and switchgrass rhizospheres and primarily aligned with the genera Bradyrhizobium, Acidiphilium and unclassified Rhizobiales. Betaproteobacteria aligning sequences were obtained from only the Red Oak root metagenomes and primarily aligned with the genera Paraburkholderia, Burkholderia and Caballeronia. Interestingly, sequences from the environmental metagenomes were not closely aligned to those from well-studied propanotrophs, such as Mycobacterium and Rhodococcus. Overall, the study highlights the previously unreported diversity of putative propanotrophs in environmental samples. The common occurrence of propane monooxygenase gene clusters has implications for their potential use for contaminant biodegradation.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Eshghdoostkhatami Z, Cupples AM. Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation. J Microbiol Methods 2024; 219:106908. [PMID: 38403133 DOI: 10.1016/j.mimet.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
1,4-Dioxane, a likely human carcinogen, is a co-contaminant at many chlorinated solvent contaminated sites. Conventional treatment technologies, such as carbon sorption or air stripping, are largely ineffective, and so many researchers have explored bioremediation for site clean-up. An important step towards this involves examining the occurrence of the functional genes associated with 1,4-dioxane biodegradation. The current research explored potential biomarkers for 1,4-dioxane in three mixed microbial communities (wetland sediment, agricultural soil, impacted site sediment) using monooxygenase targeted amplicon sequencing, followed by quantitative PCR (qPCR). A BLAST analysis of the sequencing data detected only two of the genes previously associated with 1,4-dioxane metabolism or co-metabolism, namely propane monooxygenase (prmA) from Rhodococcus jostii RHA1 and Rhodococcus sp. RR1. To investigate this further, qPCR primers and probes were designed, and the assays were used to enumerate prmA gene copies in the three communities. Gene copies of Rhodococcus RR1 prmA were detected in all three, while gene copies of Rhodococcus jostii RHA1 prmA were detected in two of the three sample types (except impacted site sediment). Further, there was a statistically significant increase in RR1 prmA gene copies in the microcosms inoculated with impacted site sediment following 1,4-dioxane biodegradation compared to the control microcosms (no 1,4-dioxane) or to the initial copy numbers before incubation. Overall, the results indicate the importance of Rhodococcus associated prmA, compared to other 1,4-dioxane degrading associated biomarkers, in three different microbial communities. Also, the newly designed qPCR assays provide a platform for others to investigate 1,4-dioxane biodegradation potential in mixed communities and should be of particular interest to those considering bioremediation as a potential 1,4-dioxane remediation approach.
Collapse
Affiliation(s)
- Zohre Eshghdoostkhatami
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Chen Y, Ren H, Kong X, Wu H, Lu Z. A multicomponent propane monooxygenase catalyzes the initial degradation of methyl tert-butyl ether in Mycobacterium vaccae JOB5. Appl Environ Microbiol 2023; 89:e0118723. [PMID: 37823642 PMCID: PMC10617536 DOI: 10.1128/aem.01187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
Methyl tert-butyl ether (MTBE) has been recognized as a groundwater contaminant due to its widespread distribution and potential threat to human health. The limited understanding of the enzymes catalyzing MTBE degradation restricts their application in MTBE bioremediation. In this study, an MTBE-degrading soluble di-iron monooxygenase that clusters phylogenetically with a known propane monooxygenase (PRM) encoded by the prmABCD gene cluster was identified and functionally characterized, revealing their role in MTBE metabolism by Mycobacterium vaccae JOB5. Transcriptome analysis demonstrated that the expression of prmABCD was upregulated when JOB5 was induced by MTBE. Escherichia coli Rosetta heterologously expressing prmABCD from JOB5 could transform MTBE, indicating that the PRM of JOB5 is capable of the initial degradation of MTBE. The loss of the gene encoding the oxygenase α-subunit or β-subunit, the coupling protein, or the reductase disrupted MTBE transformation by the recombinant E. coli Rosetta. In addition, the catalytic capacity of PRM is likely affected by residue G95 in the active site pocket and residues I84, P165, A269, and V270 in the substrate tunnel structure. Mutation of amino acids in the active site and substrate tunnel resulted in inefficiency or inactivation of MTBE degradation, and the activity in 1,4-dioxane (1,4-D) degradation was diminished less than that in MTBE degradation.IMPORTANCEMulticomponent monooxygenases catalyzing the initial hydroxylation of MTBE are important in MTBE biodegradation. Previous studies of MTBE degradation enzymes have focused on P450s, alkane monooxygenase and MTBE monooxygenase, but the vital role of soluble di-iron monooxygenases has rarely been reported. In this study, we deciphered the essential catalytic role of a PRM and revealed the key residues of the PRM in MTBE metabolism. Our findings provide new insight into the MTBE-degrading gene cluster and enzymes in bacteria. This characterization of the PRM associated with MTBE degradation expands our understanding of MTBE-degrading gene diversity and provides a novel candidate enzyme for the bioremediation of MTBE-contaminated sites.
Collapse
Affiliation(s)
- Yiyang Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Hatzinger PB, Lippincott DR. Field demonstration of N-Nitrosodimethylamine (NDMA) treatment in groundwater using propane biosparging. WATER RESEARCH 2019; 164:114923. [PMID: 31400594 DOI: 10.1016/j.watres.2019.114923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is found in groundwater and drinking water from industrial, agricultural, water treatment, and military/aerospace sources, and it must often be treated to part-per-trillion (ng/L) concentrations. The most effective remedial technology for NDMA in groundwater is pump-and-treat with ultraviolet irradiation (UV), but this approach is expensive because it requires ex situ infrastructure and high energy input. The objective of this project was to evaluate an in situ biological treatment approach for NDMA. Previous laboratory studies have revealed that propane-oxidizing bacteria are capable of biodegrading NDMA from μg/L to low ng/L concentrations (Fournier et al., 2009; Webster et al., 2013). During this field study, air and propane gas were sparged into an NDMA-contaminated aquifer for more than 1 year. Groundwater samples were collected throughout the study from a series of monitoring wells within, downgradient, and sidegradient of the zone of influence of the biosparge system. Over the course of the study, NDMA concentrations declined by 99.7% to >99.9% in the four monitoring wells within the zone of influence of the biosparge system, reaching low ng/L concentrations whereas the control well declined by only 14%. Pseudo first-order degradation rate constants for NDMA in system monitoring wells ranged from ∼0.019 day -1 to 0.037 day -1 equating to half-lives ranging from 19 to 36 days. Native propanotrophs increased by more than one order of magnitude in the propane-impacted wells but not in the control well. The field data show for the first time that propane biosparging can be an effective in situ approach to reduce the concentrations of NDMA in a groundwater to ng/L concentrations.
Collapse
Affiliation(s)
- Paul B Hatzinger
- Biotechnology Development and Applications Group, Aptim Federal Services, Lawrenceville, NJ, United States.
| | - David R Lippincott
- Biotechnology Development and Applications Group, Aptim Federal Services, Lawrenceville, NJ, United States
| |
Collapse
|
6
|
Raj I, Bansiwal A, Vaidya AN. Kinetic evaluation for rapid degradation of dimethylamine enriched with Agromyces and Ochrobactrum sp. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:322-329. [PMID: 31158684 DOI: 10.1016/j.jenvman.2019.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Dimethylamine (DMA) possesses an obnoxious odor which has resulted in public concern during the past several decades. A rare bacterial species proficient to degrade DMA, designated IR-26, was isolated from Indian Oil Corporation Limited (IOCL) and identified as Agromyces and Ochrobactrum sp., which has presented a rapid degradation when compared to other bacterial species which were capable to degrade DMA. The removal efficiency of 100% has been calculated in different concentration of DMA. The kinetic study reveals the maximum reduction rate of DMA was 0.11 per hour and the maximum growth rate of biomass was 0.013 per hour respectively. The saturation constant of DMA was around 1.96 mg/L which shows a high affinity of DMA. The importance of these analyses is offered and conversed in this paper.
Collapse
Affiliation(s)
- Ishan Raj
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, India; Academy of Scientific and Innovative Research, CSIR-NEERI, Nagpur, 440020 Maharashtra, India.
| | - Amit Bansiwal
- Environmental Material Division, CSIR-NEERI, Nagpur, India
| | - A N Vaidya
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India
| |
Collapse
|
7
|
Na-Phatthalung W, Musikavong C, Suttinun O. Degradation of N-nitrosodimethylamine and its amine precursors by cumene-induced Rhodococcus sp. strain L4. Biodegradation 2019; 30:375-388. [DOI: 10.1007/s10532-019-09876-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
8
|
Setty K, Loret JF, Courtois S, Hammer CC, Hartemann P, Lafforgue M, Litrico X, Manasfi T, Medema G, Shaheen M, Tesson V, Bartram J. Faster and safer: Research priorities in water and health. Int J Hyg Environ Health 2019; 222:593-606. [PMID: 30910612 PMCID: PMC6545151 DOI: 10.1016/j.ijheh.2019.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/22/2022]
Abstract
The United Nations' Sustainable Development Goals initiated in 2016 reiterated the need for safe water and healthy lives across the globe. The tenth anniversary meeting of the International Water and Health Seminar in 2018 brought together experts, students, and practitioners, setting the stage for development of an inclusive and evidence-based research agenda on water and health. Data collection relied on a nominal group technique gathering perceived research priorities as well as underlying drivers and adaptation needs. Under a common driver of public health protection, primary research priorities included the socioeconomy of water, risk assessment and management, and improved monitoring methods and intelligence. Adaptations stemming from these drivers included translating existing knowledge to providing safe and timely services to support the diversity of human water needs. Our findings present a comprehensive agenda of topics at the forefront of water and health research. This information can frame and inform collective efforts of water and health researchers over the coming decades, contributing to improved water services, public health, and socioeconomic outcomes.
Collapse
Affiliation(s)
- Karen Setty
- The Water Institute at University of North Carolina at Chapel Hill, Department of Environmental Sciences and Engineering, 166 Rosenau Hall, CB #7431, Chapel Hill, NC, 27599-7431, USA.
| | - Jean-Francois Loret
- Suez, Centre International de Recherche sur l'Eau et l'Environnement (CIRSEE), 38 rue du President Wilson, 78230, Le Pecq, France.
| | - Sophie Courtois
- Suez, Centre International de Recherche sur l'Eau et l'Environnement (CIRSEE), 38 rue du President Wilson, 78230, Le Pecq, France.
| | - Charlotte Christiane Hammer
- Norwich Medical School, University of East Anglia Faculty of Medicine and Health Sciences, Norwich, NR4 7TJ, UK.
| | - Philippe Hartemann
- Université de Lorraine, Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France.
| | - Michel Lafforgue
- Suez Consulting, Le Bruyère 2000 - Bâtiment 1, Zone du Millénaire, 650 Rue Henri Becquerel, CS79542, 34961, Montpellier Cedex 2, France.
| | - Xavier Litrico
- Suez, Tour CB21, 16 Place de l'Iris, 92040, Paris La Defense Cedex, France.
| | - Tarek Manasfi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Gertjan Medema
- KWR Watercycle Research Institute, Groningenhaven 7, 3433, PE, Nieuwegein, the Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands.
| | - Mohamed Shaheen
- School of Public Health, University of Alberta, 3-300 Edmonton Clinic Health Academy, 11405 - 87 Ave, Edmonton, AB T6G 1C9, Canada.
| | - Vincent Tesson
- French National Institute for Agricultural Research (INRA), UMR 1114 EMMAH, 228 route de l'Aérodrome, CS 40 509, 84914, Avignon Cedex 9, France.
| | - Jamie Bartram
- The Water Institute at University of North Carolina at Chapel Hill, Department of Environmental Sciences and Engineering, 166 Rosenau Hall, CB #7431, Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
9
|
Trussell B, Trussell S, Qu Y, Gerringer F, Stanczak S, Venezia T, Monroy I, Bacaro F, Trussell R. A four-year simulation of soil aquifer treatment using columns filled with San Gabriel Valley sand. WATER RESEARCH 2018; 144:26-35. [PMID: 30014976 DOI: 10.1016/j.watres.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Two column pairs filled with 3.05-m of a sandy soil from the Upper San Gabriel Valley were operated for a period of four and ½ years on municipal effluent from the San Jose Creek Water Reclamation Plant operated by the Sanitation Districts of Los Angeles County (LACSD). One column pair was fed filtered, chlorinated effluent (tertiary effluent) for the entire period. The other pair was fed ozonated secondary effluent for 8-mo, ozonated secondary effluent filtered through biological activated carbon (O3/BAC) for 7-mo and tertiary effluent for 38-mo. Each column pair was operated in series, where the first column was operated for a shorter residence time and the second column for a longer residence time. Residence times tested were 5-d, 28-d, 30-d, 58-d, 60-d, 150-d and 180-d. For the last 38-mo, both pairs of columns had a residence time of 30-d in the first column and the total residence time of the two pairs was 150 and 180-d, respectively. Testing showed both of these pairs had the same long-term performance. The column pairs with a 150 to 180-d residence time, which were both fed tertiary effluent, reached an effluent total organic carbon (TOC) of 1.8 mg/L. Column pairs with a 28 to 30-d residence time, which were fed tertiary, ozonated, and O3/BAC effluent, reached effluent TOCs of 2.3, 2.1 and 1.8 mg/L respectively. In the latter, some TOC removal was shifted from the soil columns to the BAC. During the last 38 months of testing, using tertiary effluent as the source water, a series of sampling events was performed throughout the soil column system for N-nitrosodimethylamine (NDMA) and chemicals of emerging concern (CECs). NDMA was substantially reduced in all the columns, with a median value of 3 ng/L after 30-d and <2 ng/L after both 150 and 180-d. Twenty-one CECs were found in the majority of tertiary effluent samples, twelve of which were attenuated by the soil columns and the remaining were not. Chemicals found to be recalcitrant were 4-nonylphenol, acesulfame-k, carbamazepine, lidocaine, primidone, simazine, sucralose, sulfamethoxazole, and TCEP. Using excitation-emission matrix (EEM) techniques, soluble microbial products (SMP) peak characteristic of effluent organic matter (EfOM) is nearly eliminated after a 30-d hydraulic retention time (HRT) and completely eliminated in the 150/180-d samples. The intensity of the other peaks is significantly reduced as well, resulting in an EEM much like that of natural groundwater.
Collapse
Affiliation(s)
- Bryan Trussell
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States.
| | - Shane Trussell
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Yan Qu
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Fred Gerringer
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Sangam Stanczak
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Teresa Venezia
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Israel Monroy
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Fernanda Bacaro
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States
| | - Rhodes Trussell
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| |
Collapse
|
10
|
Gerrity D, Arnold M, Dickenson E, Moser D, Sackett JD, Wert EC. Microbial community characterization of ozone-biofiltration systems in drinking water and potable reuse applications. WATER RESEARCH 2018; 135:207-219. [PMID: 29477059 DOI: 10.1016/j.watres.2018.02.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/16/2023]
Abstract
Microbial community structure in the ozone-biofiltration systems of two drinking water and two wastewater treatment facilities was characterized using 16S rRNA gene sequencing. Collectively, these datasets enabled comparisons by facility, water type (drinking water, wastewater), pre-oxidation (ozonation, chlorination), media type (anthracite, activated carbon), media depth, and backwash dynamics. Proteobacteria was the most abundant phylum in drinking water filters, whereas Bacteroidetes, Chloroflexi, Firmicutes, and Planctomycetes were differentially abundant in wastewater filters. A positive correlation was observed between media depth and relative abundance of Cyanobacteria in drinking water filters, but there was only a slight increase in one alpha diversity metric with depth in the wastewater filters. Media type had a significant effect on beta but not alpha diversity in drinking water and wastewater filters. Pre-ozonation caused a significant decrease in alpha diversity in the wastewater filters, but the effect on beta diversity was not statistically significant. An evaluation of backwash dynamics resulted in two notable observations: (1) endosymbionts such as Neochlamydia and Legionella increased in relative abundance following backwashing and (2) nitrogen-fixing Bradyrhizobium dominated the microbial community in wastewater filters operated with infrequent backwashing. Bradyrhizobium is known to generate extracellular polymeric substances (EPS), which may adversely impact biofilter performance and effluent water quality. These findings have important implications for public health and the operation and resiliency of biofiltration systems.
Collapse
Affiliation(s)
- Daniel Gerrity
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States.
| | - Mayara Arnold
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Duane Moser
- Desert Research Institute, 755 E. Flamingo Rd. Las Vegas, NV 89119, United States
| | - Joshua D Sackett
- Desert Research Institute, 755 E. Flamingo Rd. Las Vegas, NV 89119, United States; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States
| | - Eric C Wert
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| |
Collapse
|
11
|
Sgroi M, Vagliasindi FGA, Snyder SA, Roccaro P. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal. CHEMOSPHERE 2018; 191:685-703. [PMID: 29078192 DOI: 10.1016/j.chemosphere.2017.10.089] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/05/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5A Engineering Drive 1; T-Lab Building, #02-01, 117411, Singapore
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
12
|
Hatzinger PB, Lewis C, Webster TS. Biological treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in a field-scale fluidized bed bioreactor. WATER RESEARCH 2017; 126:361-371. [PMID: 28972939 DOI: 10.1016/j.watres.2017.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations. Previous laboratory studies have shown that the bacterium Rhodococcus ruber ENV425 can biodegrade NDMA and NTDMA during growth on propane as a primary substrate and that the strain can effectively reduce NDMA concentrations in propane-fed bench-scale bioreactors of different design. R. ruber ENV425 was used as a seed culture for the FBR, which operated at a fluidization flow of ∼19 L-per-min (LPM) and received propane, oxygen, and inorganic nutrients in the feed. The reactor effectively treated ∼1 μg/L of influent NDMA to effluent concentrations of less than 10 ng/L at a hydraulic residence time (HRT) of only 10 min. At a 20 min HRT, the FBR reduced NDMA to <4.2 ng/L in the effluent, which was the discharge limit at the test site where the study was conducted. Similarly, NTDMA was consistently treated in the FBR from ∼0.5 μg/L to <10 ng/L at an HRT of 10 min or longer. Based on these removal rates, the average NDMA and NTDMA elimination capacities achieved were 2.1 mg NDMA treated/m3 of expanded bed/hr of operation and 1.1 mg NTDMA treated/m3 of expanded bed/hr of operation, respectively. The FBR system was highly resilient to upsets including power outages. Treatment of NDMA, but not NTDMA, was marginally affected when trace co-contaminants including trichloroethene (TCE) and trichlorofluoromethane (Freon 11) were initially added to feed groundwater, but performance recovered over a few weeks in the continued presence of these compounds. Strain ENV425 appeared to be replaced by native propanotrophs over time based on qPCR analysis, but contaminant treatment was not diminished. The results suggest that a FBR can be a viable alternative to UV treatment for removing NDMA from groundwater.
Collapse
Affiliation(s)
- Paul B Hatzinger
- Biotechnology Development and Applications Group, CB&I Federal Services, Lawrenceville, NJ, 08648, USA.
| | - Celeste Lewis
- Envirogen Technologies, Inc., Rancho Cucamonga, CA, 91730, USA
| | - Todd S Webster
- Envirogen Technologies, Inc., Rancho Cucamonga, CA, 91730, USA
| |
Collapse
|
13
|
Li D, Stanford B, Dickenson E, Khunjar WO, Homme CL, Rosenfeldt EJ, Sharp JO. Effect of advanced oxidation on N-nitrosodimethylamine (NDMA) formation and microbial ecology during pilot-scale biological activated carbon filtration. WATER RESEARCH 2017; 113:160-170. [PMID: 28213337 DOI: 10.1016/j.watres.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Water treatment combining advanced oxidative processes with subsequent exposure to biological activated carbon (BAC) holds promise for the attenuation of recalcitrant pollutants. Here we contrast oxidation and subsequent biofiltration of treated wastewater effluent employing either ozone or UV/H2O2 followed by BAC during pilot-scale implementation. Both treatment trains largely met target water quality goals by facilitating the removal of a suite of trace organics and bulk water parameters. N-nitrosodimethylamine (NDMA) formation was observed in ozone fed BAC columns during biofiltration and to a lesser extent in UV/H2O2 fed columns and was most pronounced at 20 min of empty bed contact time (EBCT) when compared to shorter EBCTs evaluated. While microbial populations were highly similar in the upper reaches, deeper samples revealed a divergence within and between BAC filtration systems where EBCT was identified to be a significant environmental predictor for shifts in microbial populations. The abundance of Nitrospira in the top samples of both columns provides an explanation for the oxidation of nitrite and corresponding increases in nitrate concentrations during BAC transit and support interplay between nitrogen cycling with nitrosamine formation. The results of this study demonstrate that pretreatments using ozone versus UV/H2O2 impart modest differences to the overall BAC microbial population structural and functional attributes, and further highlight the need to evaluate NDMA formation prior to full-scale implementation of BAC in potable reuse applications.
Collapse
Affiliation(s)
- Dong Li
- NSF Engineering Research Center ReNUWIt, Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - Eric Dickenson
- NSF Engineering Research Center ReNUWIt, Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | | | - Carissa L Homme
- NSF Engineering Research Center ReNUWIt, Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - Jonathan O Sharp
- NSF Engineering Research Center ReNUWIt, Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
14
|
Wang B, Chu KH. Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria. CHEMOSPHERE 2017; 168:1494-1497. [PMID: 27939660 DOI: 10.1016/j.chemosphere.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
1,2,3-Trichloropropane (TCP) is an emerging groundwater pollutant and suspected human carcinogen. TCP, a recalcitrant contaminant, has been detected in the subsurface near TCP manufacture facilities and many superfund sites. Considering the toxicity and the occurence of TCP, there is a need to seek for cost-effective treatment technologies for TCP-contaminated sites. This paper investigated TCP biodegradation by propane-oxidizing bacteria (PrOB) which are known to express propane monooxygenase (PrMO). PrMO can cometabolically degrade many different contaminants. Four PrOB, Rhodococus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus rubber ENV425 and one isolate Sphingopyxis sp. AX-A were examined for their ability to degrade TCP. All the four PrOB resting cells were able to degrade TCP. Strain JOB5 exhibited the best TCP degradation ability (vinitial = 9.7 ± 0.7 μg TCP (mg protein)-1h-1). No TCP was degraded in the presence of acetylene (an inhibitor for PrMO), suggesting that PrMO might be responsible for TCP degradation. Furthermore, competitive inhibition was observed between propane and TCP, and between trichloroethylene (TCE) and TCP.
Collapse
Affiliation(s)
- Baixin Wang
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
15
|
Mikkelson KM, Homme CL, Li D, Sharp JO. Propane biostimulation in biologically activated carbon (BAC) selects for bacterial clades adept at degrading persistent water pollutants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1405-1414. [PMID: 26154499 DOI: 10.1039/c5em00212e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biologically activated carbon (BAC) can be used in both municipal water and hazardous waste remediation applications to enhance contaminant attenuation in water; however, questions remain about how selective pressures can be applied to increase the capabilities of microbial communities to attenuate recalcitrant contaminants. Here we utilized flow-through laboratory columns seeded with municipally derived BAC and exposed to water from a local drinking water facility to query how propane biostimulation impacts resident microorganisms. Ecological analyses using high throughput phylogenetic sequencing revealed that while propane did not increase the total number of microbiological species, it did select for bacterial communities that were distinct from those without propane. Temporal extractions demonstrated that microbial succession was rapid and established in approximately 2 months. A higher density of propane monooxygenase genes and bacterial clades including the Pelosinus and Dechloromonas genera suggest an enhanced potential for the degradation of persistent water pollutants in propane-stimulated systems. However, the ecological selective pressure was exhausted in less than 15 cm of transit in this flow-through scenario (25 hour retention) indicating a pronounced zonation that could limit the size of a biostimulated zone and require physical mixing, hydraulic manipulation, or other strategies to increase the spatial impact of biostimulation in flow-through scenarios.
Collapse
Affiliation(s)
- Kristin M Mikkelson
- ReNUWit Engineering Research Center, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| | | | | | | |
Collapse
|
16
|
Wang W, Guo Y, Yang Q, Huang Y, Zhu C, Fan J, Pan F. Characterization of the microbial community structure and nitrosamine-reducing isolates in drinking water biofilters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:219-225. [PMID: 25841075 DOI: 10.1016/j.scitotenv.2015.03.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Two biofilters were constructed using biological activated carbon (BAC) and nitrosamine-containing water from two drinking water treatment plants. The microbiome of each biofilter was characterized by 454 high-throughput pyrosequencing, and one nitrosamine-reducing bacterium was isolated. The results showed that nitrosamines changed the relative abundance at both the phylum and class levels, and the new genera were observed in the microbial communities of the two BAC filters after cultivation. As such, the genus Rhodococcus, which includes many nitrosamine-reducing strains reported in previous studies, was only detected in the BAC2 filter after cultivation. These findings indicate that nitrosamines can significantly affect the genus level in the microbial communities. Furthermore, the isolated bacterial culture Rhodococcus cercidiphylli A41 AS-1 exhibited the ability to reduce five nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodi-n-propylamine, N-nitrosopyrrolidine, and N-nitrosodi-n-butylamine) with removal ratios that ranged from 38.1% to 85.4%. The isolate exhibited a better biodegradation ability with nitrosamine as the carbon source when compared with nitrosamine as the nitrogen source. This study increases our understanding of the microbial community in drinking water biofilters with trace quantities of nitrosamines, and provides information on the metabolism of nitrosamine-reducing bacteria.
Collapse
Affiliation(s)
- Wanfeng Wang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China.
| | - Yanling Guo
- College of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qingxiang Yang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yao Huang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chunyou Zhu
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Jing Fan
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Feng Pan
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Weathers TS, Higgins CP, Sharp JO. Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5458-5466. [PMID: 25806435 DOI: 10.1021/es5060034] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study focuses on interactions between aerobic soil-derived hydrocarbon degrading bacteria and a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates that are found in aqueous film-forming foams used for fire suppression. No effect on toluene degradation rate or induction time was observed when active cells of Rhodococcus jostii strain RHA1 were exposed to toluene and a mixture of perfluoroalkyl acids (PFAAs) including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) at concentrations near the upper bounds of groundwater relevance (11 PFAAs at 10 mg/L each). However, exposure to aqueous PFAA concentrations above 2 mg/L (each) was associated with enhanced aggregation of bacterial cells and significant increases in extracellular polymeric substance production. Flocculation was only observed during exponential growth and not elicited when PFAAs were added to resting incubations; analogous flocculation was also observed in soil enrichments. Aggregation was accompanied by 2- to 3-fold upregulation of stress-associated genes, sigF3 and prmA, during growth of this Rhodococcus in the presence of PFAAs. These results suggest that biological responses, such as microbial stress and biofilm formation, could be more prominent than suppression of co-contaminant biodegradation in subsurface locations where poly- and perfluoroalkyl substances occur with hydrocarbon fuels.
Collapse
Affiliation(s)
- Tess S Weathers
- Hydrologic Science and Engineering Program and Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher P Higgins
- Hydrologic Science and Engineering Program and Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jonathan O Sharp
- Hydrologic Science and Engineering Program and Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
18
|
Gerrity D, Pisarenko AN, Marti E, Trenholm RA, Gerringer F, Reungoat J, Dickenson E. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation. WATER RESEARCH 2015; 72:251-261. [PMID: 25037928 DOI: 10.1016/j.watres.2014.06.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States; Trussell Technologies, Inc., 380 Stevens Avenue, Suite 308, Solana Beach, CA 92075, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454015, Las Vegas, NV 89154-4015, United States.
| | - Aleksey N Pisarenko
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States; Trussell Technologies, Inc., 380 Stevens Avenue, Suite 308, Solana Beach, CA 92075, United States
| | - Erica Marti
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454015, Las Vegas, NV 89154-4015, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| | - Fred Gerringer
- Trussell Technologies, Inc., 380 Stevens Avenue, Suite 308, Solana Beach, CA 92075, United States
| | - Julien Reungoat
- Advanced Water Management Centre, University of Queensland, Level 4, Gehrmann Building (60), St. Lucia, QLD 4072, Australia
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States.
| |
Collapse
|
19
|
Liao X, Chen C, Zhang J, Dai Y, Zhang X, Xie S. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter. CHEMOSPHERE 2015; 119:935-940. [PMID: 25280176 DOI: 10.1016/j.chemosphere.2014.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/26/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization.
Collapse
Affiliation(s)
- Xiaobin Liao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingxu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaojian Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Li M, Mathieu J, Yang Y, Fiorenza S, Deng Y, He Z, Zhou J, Alvarez PJJ. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9950-9958. [PMID: 23909410 DOI: 10.1021/es402228x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soluble di-iron monooxygenases (SDIMOs), especially group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), are of significant interest due to their potential role in the initiation of 1,4-dioxane (dioxane) degradation. Functional gene array (i.e., GeoChip) analysis of Arctic groundwater exposed to dioxane since 1980s revealed that various dioxane-degrading SDIMO genes were widespread, and PCR-DGGE analysis showed that group-5 SDIMOs were present in every tested sample, including background groundwater with no known dioxane exposure history. A group-5 thmA-like gene was enriched (2.4-fold over background, p < 0.05) in source-zone samples with higher dioxane concentrations, suggesting selective pressure by dioxane. Microcosm assays with (14)C-labeled dioxane showed that the highest mineralization capacity (6.4 ± 0.1% (14)CO2 recovery during 15 days, representing over 60% of the amount degraded) corresponded to the source area, which was presumably more acclimated and contained a higher abundance of SDIMO genes. Dioxane mineralization ceased after 7 days and was resumed by adding acetate (0.24 mM) as an auxiliary substrate to replenish NADH, a key coenzyme for the functioning of monoxygenases. Acetylene inactivation tests further corroborated the vital role of monooxygenases in dioxane degradation. This is the first report of the prevalence of oxygenase genes that are likely involved in dioxane degradation and suggests their usefulness as biomarkers of dioxane natural attenuation.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Homme CL, Sharp JO. Differential microbial transformation of nitrosamines by an inducible propane monooxygenase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7388-7395. [PMID: 23718280 DOI: 10.1021/es401129u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The toxicity of N-nitrosamines, their presence in drinking and environmental water supplies, and poorly understood recalcitrance collectively necessitate a better understanding of their potential for bioattenuation. Here, we show that the bacterial strain Rhodococcus jostii RHA1 can biotransform N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopyrrolidine (NPYR), and possibly N-nitrosomorpholine (NMOR) in addition to N-nitrosodimethylamine (NDMA). Growth of cells on propane as the sole carbon source greatly enhanced degradation rates when contrasted with cells grown on complex organics. Propane-induced rates in order of fastest to slowest were NDMA > NDEA > NDPA > NPYR > NMOR at concentrations <2000 μg/L. Removal rates for linear functional groups scaled inversely with mass and cyclic nitrosamines were more recalcitrant than linear nitrosamines. Controls demonstrated significant NDEA and NDPA losses independent of biomass, suggesting abiotic processes may play a role in attenuation of these two compounds under experimental conditions tested here. In contrast to NDMA, a transition from first to zero order kinetics was not observed for the other nitrosamines included in this study over a concentration range of 20-2000 μg/L. A genetic knockout for the propane monooxygenase enzyme (PrMO) confirmed the role of this enzyme in the biotransformation of NDEA and NPYR. This study furthers our understanding of environmental nitrosamine attenuation by revealing an enzymatic mechanism for the biotransformation of multiple nitrosamines, their relative recalcitrance to transformation, and potential for abiotic loss.
Collapse
Affiliation(s)
- Carissa L Homme
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | | |
Collapse
|
22
|
Weidhaas J, Dupont RR. Aerobic biotransformation of N-nitrosodimethylamine and N-nitrodimethylamine in methane and benzene amended soil columns. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 150:45-53. [PMID: 23673086 DOI: 10.1016/j.jconhyd.2013.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Aerobic biotransformation of N-nitrosodimethylamine (NDMA), an emerging contaminant of concern, and its structural analog N-nitrodimethylamine (DMN), was evaluated in benzene and methane amended groundwater passed through laboratory scale soil columns. Competitive inhibition models were used to model the kinetics for NDMA and DMN cometabolism accounting for the concurrent degradation of the growth and cometabolic substrates. Transformation capacities for NDMA and DMN with benzene (13 and 23μg (mgcells)(-1)) and methane (0.14 and 8.4μg (mgcells)(-1)) grown cultures, respectively are comparable to those presented in the literature, as were first order endogenous decay rates estimated to be 2.1×10(-2)±1.7×10(-3)d(-1) and 6.5×10(-1)±7.1×10(-1)d(-1) for the methane and benzene amended cultures, respectively. These studies highlight possible attenuation mechanisms and rates for NDMA and DMN biotransformation in aerobic aquifers undergoing active remediation, natural attenuation or managed aquifer recharge with treated wastewater (i.e., reclaimed water).
Collapse
Affiliation(s)
- Jennifer Weidhaas
- West Virginia University, Civil and Environmental Engineering, PO Box 6103, Morgantown, WV 26505, United States.
| | | |
Collapse
|
23
|
Li D, Alidina M, Ouf M, Sharp JO, Saikaly P, Drewes JE. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations. WATER RESEARCH 2013; 47:2421-2430. [PMID: 23490107 DOI: 10.1016/j.watres.2013.02.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/08/2012] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems.
Collapse
Affiliation(s)
- Dong Li
- Water Reuse and Desalination Center (WDRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
24
|
Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems. Appl Environ Microbiol 2012; 78:6819-28. [PMID: 22798375 DOI: 10.1128/aem.01223-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.
Collapse
|
25
|
Sharma VK. Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water – A review. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2011.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
26
|
Pitoi MM, Patterson BM, Furness AJ, Bastow TP, McKinley AJ. Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: a column study. WATER RESEARCH 2011; 45:2550-2560. [PMID: 21396674 DOI: 10.1016/j.watres.2011.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/04/2011] [Accepted: 02/12/2011] [Indexed: 05/30/2023]
Abstract
The fate of N-nitrosomorpholine (NMOR) was evaluated at microgram and nanogram per litre concentrations. Experiments were undertaken to simulate the passage of groundwater contaminants through a deep anaerobic pyritic aquifer system, as part of a managed aquifer recharge (MAR) strategy. Sorption studies demonstrated the high mobility of NMOR in the Leederville aquifer system, with retardation coefficients between 1.2 and 1.6. Degradation studies from a 351 day column experiment and a 506 day stop-flow column experiment showed an anaerobic biologically induced reductive degradation process which followed first order kinetics. A biological lag-time of less than 3 months and a transient accumulation of morpholine (MOR) were also noted during the degradation. Comparable half-life degradation rates of 40-45 days were observed over three orders of magnitude in concentration (200 ng L(-1) to 650 μg L(-1)). An inhibitory effect on microorganism responsible to the biodegradation of NMOR at 650 μg L(-1) or a threshold effect at 200 ng L(-1) was not observed during these experiments.
Collapse
Affiliation(s)
- M M Pitoi
- CSIRO Land and Water, Private Bag 5, Wembley, WA 6913, Australia
| | | | | | | | | |
Collapse
|