1
|
Temme IJ, Berger P, Dobrindt U, Mellmann A. Carbon source utilization in hybrid Shiga toxin-producing and uropathogenic Escherichia coli indicates uropathogenic origin. Int J Med Microbiol 2025; 319:151653. [PMID: 40286499 DOI: 10.1016/j.ijmm.2025.151653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
To investigate the adaptation of hybrid Escherichia coli to the intestinal and extraintestinal milieu, we compared our model hybrid Shiga toxin-producing (STEC) and uropathogenic (UPEC) E. coli O2:H6 strains with non-pathogenic E. coli and canonical UPEC and STEC strains in a carbon source utilization assay testing 95 common carbon sources under aerobic and anaerobic conditions. Comparison of anaerobic to aerobic growth showed a 2-fold decrease and 2.5-fold increase in the growth capacity and lag phase, respectively. While the UPEC and STEC/UPEC hybrids retained the utilization of several organic acids, amino acids, and peptides, the STEC and non-pathogenic strains relied almost exclusively on the utilization of sugar compounds under anaerobic conditions. Cluster analysis indicated a higher degree of difference and separation between all strains under aerobic conditions. The UPEC, hybrids, and STEC strain B2F1 showed high similarities in aerobic carbon utilization following growth patterns observed in previous phenotype assays. Additionally, we observed known UPEC virulence traits, such as the aerobic utilization of D-serine in our model STEC/UPEC hybrids. Combined, these findings suggest that the intestinal STEC/UPEC O2:H6 isolates originated from a UPEC background and acquired the ability to cause intestinal disease with the addition of Shiga toxin as a virulence factor.
Collapse
Affiliation(s)
| | - Petya Berger
- University Hospital Münster, Institute of Hygiene, Münster, Germany.
| | - Ulrich Dobrindt
- University Hospital Münster, Institute of Hygiene, Münster, Germany.
| | | |
Collapse
|
2
|
Sudarsan S, Demling P, Ozdemir E, Ben Ammar A, Mennicken P, Buescher JM, Meurer G, Ebert BE, Blank LM. Acetol biosynthesis enables NADPH balance during nitrogen limitation in engineered Escherichia coli. Microb Cell Fact 2025; 24:65. [PMID: 40091049 PMCID: PMC11910842 DOI: 10.1186/s12934-025-02687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Nutrient limitation strategies are commonly applied in bioprocess development to engineered microorganisms to further maximize the production of the target molecule towards theoretical limits. Biomass formation is often limited under the limitation of key nutrients, and understanding how fluxes in central carbon metabolism are re-routed during the transition from nutrient excess to nutrient-limited condition is vital to target and tailor metabolic engineering strategies. Here, we report the physiology and intracellular flux distribution of an engineered acetol-producing Escherichia coli on glycerol under nitrogen-limited, non-growing production conditions. RESULTS Acetol production in the engineered E. coli strain is triggered upon nitrogen depletion. During nitrogen limitation, glycerol uptake decreased, and biomass formation rates ceased. We applied 13C-flux analysis with 2-13C glycerol during exponential growth and nitrogen starvation to elucidate flux re-routing in the central carbon metabolism. The results indicate a metabolically active non-growing state with significant flux re-routing towards acetol biosynthesis and reduced flux through the central carbon metabolism. The acetol biosynthesis pathway is favorable for maintaining the NADPH/NADP+ balance. CONCLUSION The results reported in this study illustrate how the production of a value-added chemical from a waste stream can be connected to the metabolism of the whole-cell biocatalyst, making product formation mandatory for the cell to maintain its NADPH/NADP+ balance. This has implications for process design and further metabolic engineering of the whole-cell biocatalyst.
Collapse
Affiliation(s)
- Suresh Sudarsan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Philipp Demling
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany
| | - Emre Ozdemir
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Aziz Ben Ammar
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany
| | - Philip Mennicken
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany
| | - Joerg M Buescher
- BRAIN Biotech AG, 64673, Zwingenberg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | | | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
4
|
Nonaka D, Hirata Y, Kishida M, Mori A, Fujiwara R, Kondo A, Mori Y, Noda S, Tanaka T. Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli. Biotechnol J 2024; 19:e2400210. [PMID: 39167552 DOI: 10.1002/biot.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in Escherichia coli on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the gloA, eno, eda, sdaA, sdaB, and tdcG genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via yagF overexpression and disruption of the ghrA gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L-1 1,2-PDO with a 0.27 ± 0.02 g g-1-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ryosuke Fujiwara
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Shuhei Noda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| |
Collapse
|
5
|
Tan Z, Li J, Hou J, Gonzalez R. Designing artificial pathways for improving chemical production. Biotechnol Adv 2023; 64:108119. [PMID: 36764336 DOI: 10.1016/j.biotechadv.2023.108119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Metabolic engineering exploits manipulation of catalytic and regulatory elements to improve a specific function of the host cell, often the synthesis of interesting chemicals. Although naturally occurring pathways are significant resources for metabolic engineering, these pathways are frequently inefficient and suffer from a series of inherent drawbacks. Designing artificial pathways in a rational manner provides a promising alternative for chemicals production. However, the entry barrier of designing artificial pathway is relatively high, which requires researchers a comprehensive and deep understanding of physical, chemical and biological principles. On the other hand, the designed artificial pathways frequently suffer from low efficiencies, which impair their further applications in host cells. Here, we illustrate the concept and basic workflow of retrobiosynthesis in designing artificial pathways, as well as the most currently used methods including the knowledge- and computer-based approaches. Then, we discuss how to obtain desired enzymes for novel biochemistries, and how to trim the initially designed artificial pathways for further improving their functionalities. Finally, we summarize the current applications of artificial pathways from feedstocks utilization to various products synthesis, as well as our future perspectives on designing artificial pathways.
Collapse
Affiliation(s)
- Zaigao Tan
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
6
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
7
|
Abstract
Propylene glycol is a ubiquitous sustainable chemical that have several industrial applications. It can be used as a non-toxic antifreeze, moisturizers, and in cosmetics products. Commercial production of propylene glycol uses petroleum-based propylene oxide. Therefore, there is a need to develop alternative and renewable propylene glycol production routes. Renewable propylene glycol can be produced from catalytic hydrogenolysis of glycerol. This study reviews different catalyst for glycerol hydrogenolysis, the reaction mechanism, and process challenges. Additionally, previous studies related to the economic and environmental assessment of propylene glycol production are presented in detail. The technology readiness level of different production pathways were outlined as well as the challenges and future direction of propylene glycol production from glycerol and other renewable feedstocks. Catalytic transfer hydrogenolysis, a process that uses renewable H-donors in liquid medium for hydrogenolysis reaction is also discussed and compared with conventional hydrogenolysis.
Collapse
Affiliation(s)
- Jude A Okolie
- St. Peter's College Muenster, Muenster, SK S0K 2Y0, Canada.,Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
8
|
Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli. Biomolecules 2022; 12:biom12050715. [PMID: 35625642 PMCID: PMC9138338 DOI: 10.3390/biom12050715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As bulk chemicals, diols have wide applications in many fields, such as clothing, biofuels, food, surfactant and cosmetics. The traditional chemical synthesis of diols consumes numerous non-renewable energy resources and leads to environmental pollution. Green biosynthesis has emerged as an alternative method to produce diols. Escherichia coli as an ideal microbial factory has been engineered to biosynthesize diols from carbon sources. Here, we comprehensively summarized the biosynthetic pathways of diols from renewable biomass in E. coli and discussed the metabolic-engineering strategies that could enhance the production of diols, including the optimization of biosynthetic pathways, improvement of cofactor supplementation, and reprogramming of the metabolic network. We then investigated the dynamic regulation by multiple control modules to balance the growth and production, so as to direct carbon sources for diol production. Finally, we proposed the challenges in the diol-biosynthesis process and suggested some potential methods to improve the diol-producing ability of the host.
Collapse
|
9
|
Boecker S, Espinel-Ríos S, Bettenbrock K, Klamt S. Enabling anaerobic growth of Escherichia coli on glycerol in defined minimal medium using acetate as redox sink. Metab Eng 2022; 73:50-57. [DOI: 10.1016/j.ymben.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|
10
|
Kovács SC, Szappanos B, Tengölics R, Notebaart RA, Papp B. Underground metabolism as a rich reservoir for pathway engineering. Bioinformatics 2022; 38:3070-3077. [PMID: 35441658 PMCID: PMC9154287 DOI: 10.1093/bioinformatics/btac282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Motivation Bioproduction of value-added compounds is frequently achieved by utilizing enzymes from other species. However, expression of such heterologous enzymes can be detrimental due to unexpected interactions within the host cell. Recently, an alternative strategy emerged, which relies on recruiting side activities of host enzymes to establish new biosynthetic pathways. Although such low-level ‘underground’ enzyme activities are prevalent, it remains poorly explored whether they may serve as an important reservoir for pathway engineering. Results Here, we use genome-scale modeling to estimate the theoretical potential of underground reactions for engineering novel biosynthetic pathways in Escherichia coli. We found that biochemical reactions contributed by underground enzyme activities often enhance the in silico production of compounds with industrial importance, including several cases where underground activities are indispensable for production. Most of these new capabilities can be achieved by the addition of one or two underground reactions to the native network, suggesting that only a few side activities need to be enhanced during implementation. Remarkably, we find that the contribution of underground reactions to the production of value-added compounds is comparable to that of heterologous reactions, underscoring their biotechnological potential. Taken together, our genome-wide study demonstrates that exploiting underground enzyme activities could be a promising addition to the toolbox of industrial strain development. Availability and implementation The data and scripts underlying this article are available on GitHub at https://github.com/pappb/Kovacs-et-al-Underground-metabolism. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Szabolcs Cselgő Kovács
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.,Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Balázs Szappanos
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.,Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Roland Tengölics
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.,Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Richard A Notebaart
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.,Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| |
Collapse
|
11
|
Lad BC, Coleman SM, Alper HS. Microbial valorization of underutilized and nonconventional waste streams. J Ind Microbiol Biotechnol 2022; 49:kuab056. [PMID: 34529075 PMCID: PMC9118980 DOI: 10.1093/jimb/kuab056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
The growing burden of waste disposal coupled with natural resource scarcity has renewed interest in the remediation, valorization, and/or repurposing of waste. Traditional approaches such as composting, anaerobic digestion, use in fertilizers or animal feed, or incineration for energy production extract very little value out of these waste streams. In contrast, waste valorization into fuels and other biochemicals via microbial fermentation is an area of growing interest. In this review, we discuss microbial valorization of nonconventional, aqueous waste streams such as food processing effluents, wastewater streams, and other industrial wastes. We categorize these waste streams as carbohydrate-rich food wastes, lipid-rich wastes, and other industrial wastes. Recent advances in microbial valorization of these nonconventional waste streams are highlighted, along with a discussion of the specific challenges and opportunities associated with impurities, nitrogen content, toxicity, and low productivity.
Collapse
Affiliation(s)
- Beena C Lad
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, Texas 78712, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, USA
| |
Collapse
|
12
|
PyMiner: A method for metabolic pathway design based on the uniform similarity of substrate-product pairs and conditional search. PLoS One 2022; 17:e0266783. [PMID: 35404943 PMCID: PMC9000129 DOI: 10.1371/journal.pone.0266783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic pathway design is an essential step in the course of constructing an efficient microbial cell factory to produce high value-added chemicals. Meanwhile, the computational design of biologically meaningful metabolic pathways has been attracting much attention to produce natural and non-natural products. However, there has been a lack of effective methods to perform metabolic network reduction automatically. In addition, comprehensive evaluation indexes for metabolic pathway are still relatively scarce. Here, we define a novel uniform similarity to calculate the main substrate-product pairs of known biochemical reactions, and develop further an efficient metabolic pathway design tool named PyMiner. As a result, the redundant information of general metabolic network (GMN) is eliminated, and the number of substrate-product pairs is shown to decrease by 81.62% on average. Considering that the nodes in the extracted metabolic network (EMN) constructed in this work is large in scale but imbalanced in distribution, we establish a conditional search strategy (CSS) that cuts search time in 90.6% cases. Compared with state-of-the-art methods, PyMiner shows obvious advantages and demonstrates equivalent or better performance on 95% cases of experimentally verified pathways. Consequently, PyMiner is a practical and effective tool for metabolic pathway design.
Collapse
|
13
|
Tao YM, Bu CY, Zou LH, Hu YL, Zheng ZJ, Ouyang J. A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:216. [PMID: 34794503 PMCID: PMC8600716 DOI: 10.1186/s13068-021-02067-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
1,2-Propanediol is an important building block as a component used in the manufacture of unsaturated polyester resin, antifreeze, biofuel, nonionic detergent, etc. Commercial production of 1,2-propanediol through microbial biosynthesis is limited by low efficiency, and chemical production of 1,2-propanediol requires petrochemically derived routes involving wasteful power consumption and high pollution emissions. With the development of various strategies based on metabolic engineering, a series of obstacles are expected to be overcome. This review provides an extensive overview of the progress in the microbial production of 1,2-propanediol, particularly the different micro-organisms used for 1,2-propanediol biosynthesis and microbial production pathways. In addition, outstanding challenges associated with microbial biosynthesis and feasible metabolic engineering strategies, as well as perspectives on the future microbial production of 1,2-propanediol, are discussed.
Collapse
Affiliation(s)
- Yuan-Ming Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chong-Yang Bu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li-Hua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yue-Li Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhao-Juan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
14
|
Sun S, Shu L, Lu X, Wang Q, Tišma M, Zhu C, Shi J, Baganz F, Lye GJ, Hao J. 1,2-Propanediol production from glycerol via an endogenous pathway of Klebsiella pneumoniae. Appl Microbiol Biotechnol 2021; 105:9003-9016. [PMID: 34748036 DOI: 10.1007/s00253-021-11652-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023]
Abstract
Klebsiella pneumoniae is an important microorganism and is used as a cell factory for many chemicals production. When glycerol was used as the carbon source, 1,3-propanediol was the main catabolite of this bacterium. K. pneumoniae ΔtpiA lost the activity of triosephosphate isomerase and prevented glycerol catabolism through the glycolysis pathway. But this strain still utilized glycerol, and 1,2-propanediol became the main catabolite. Key enzymes of 1,2-propanediol synthesis from glycerol were investigated in detail. dhaD and gldA encoded glycerol dehydrogenases were both responsible for the conversion of glycerol to dihydroxyacetone, but overexpression of the two enzymes resulted in a decrease of 1,2-propanediol production. There are two dihydroxyacetone kinases (I and II), but the dihydroxyacetone kinase I had no contribution to dihydroxyacetone phosphate formation. Dihydroxyacetone phosphate was converted to methylglyoxal, and methylglyoxal was then reduced to lactaldehyde or hydroxyacetone and further reduced to form 1,2-propanediol. Individual overexpression of mgsA, yqhD, and fucO resulted in increased production of 1,2-propanediol, but only the combined expression of mgsA and yqhD showed a positive effect on 1,2-propanediol production. The process parameters for 1,2-propanediol production by Kp ΔtpiA-mgsA-yqhD were optimized, with pH 7.0 and agitation rate of 350 rpm found to be optimal. In the fed-batch fermentation, 9.3 g/L of 1,2-propanediol was produced after 144 h of cultivation, and the substrate conversion ratio was 0.2 g/g. This study provides an efficient way of 1,2-propanediol production from glycerol via an endogenous pathway of K. pneumoniae.Key points• 1,2-Propanediol was synthesis from glycerol by a tpiA knocked out K. pneumoniae• Overexpression of mgsA, yqhD, or fucO promote 1,2-propanediol production• 9.3 g/L of 1,2-propanediol was produced in fed-batch fermentation.
Collapse
Affiliation(s)
- Shaoqi Sun
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China.,School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lin Shu
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiyang Lu
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Qinghui Wang
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Marina Tišma
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, HR 31000, Osijek, Croatia
| | - Chenguang Zhu
- School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiping Shi
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Gary J Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Jian Hao
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China. .,Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
15
|
Clomburg JM, Cintolesi A, Gonzalez R. In silico and in vivo analyses reveal key metabolic pathways enabling the fermentative utilization of glycerol in Escherichia coli. Microb Biotechnol 2021; 15:289-304. [PMID: 34699695 PMCID: PMC8719807 DOI: 10.1111/1751-7915.13938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Most microorganisms can metabolize glycerol when external electron acceptors are available (i.e. under respiratory conditions). However, few can do so under fermentative conditions owing to the unique redox constraints imposed by the high degree of reduction of glycerol. Here, we utilize in silico analysis combined with in vivo genetic and biochemical approaches to investigate the fermentative metabolism of glycerol in Escherichia coli. We found that E. coli can achieve redox balance at alkaline pH by reducing protons to H2 , complementing the previously reported role of 1,2-propanediol synthesis under acidic conditions. In this new redox balancing mode, H2 evolution is coupled to a respiratory glycerol dissimilation pathway composed of glycerol kinase (GK) and glycerol-3-phosphate (G3P) dehydrogenase (G3PDH). GK activates glycerol to G3P, which is further oxidized by G3PDH to generate reduced quinones that drive hydrogenase-dependent H2 evolution. Despite the importance of the GK-G3PDH route under alkaline conditions, we found that the NADH-generating glycerol dissimilation pathway via glycerol dehydrogenase (GldA) and phosphoenolpyruvate (PEP)-dependent dihydroxyacetone kinase (DHAK) was essential under both alkaline and acidic conditions. We assessed system-wide metabolic impacts of the constraints imposed by the PEP dependency of the GldA-DHAK route. This included the identification of enzymes and pathways that were not previously known to be involved in glycerol metabolisms such as PEP carboxykinase, PEP synthetase, multiple fructose-1,6-bisphosphatases and the fructose phosphate bypass.
Collapse
Affiliation(s)
- James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.,Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Angela Cintolesi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.,Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
Dynamic metabolic engineering of Escherichia coli improves fermentation for the production of pyruvate and its derivatives. J Biosci Bioeng 2021; 133:56-63. [PMID: 34674961 DOI: 10.1016/j.jbiosc.2021.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
Pyruvate is a key intermediate that is involved in various synthetic metabolic pathways for microbial chemical and fuel production. It is widely used in the food, chemical, and pharmaceutical industries. However, the microbial production of pyruvate and its derivatives compete with microbial cell growth, as pyruvate is an important metabolic intermediate that serves as a hub for various endogenous metabolic pathways, including gluconeogenesis, amino acid synthesis, TCA cycle, and fatty acid biosynthesis. To achieve a more efficient bioprocess for the production of pyruvate and its derivatives, it is necessary to reduce the metabolic imbalance between cell growth and target chemical production. For this purpose, we devised a dynamic metabolic engineering strategy within an Escherichia coli model, in which a metabolic toggle switch (MTS) was employed to redirect metabolic flux from the endogenous pathway toward the target synthetic pathway. Through a combination of TCA cycle interruption through MTS and reduction of pyruvate consumption in endogenous pathways, we achieved a drastic improvement (163 mM, 26-fold) in pyruvate production. In addition, we demonstrated the redirection of metabolic flux from excess pyruvate toward isobutanol production. The final isobutanol production titer of the strain harboring MTS was 26% improved compared with that of the control strain.
Collapse
|
17
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
18
|
Nonaka D, Fujiwara R, Hirata Y, Tanaka T, Kondo A. Metabolic engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-expressing E. coli. BIORESOURCE TECHNOLOGY 2021; 329:124858. [PMID: 33631452 DOI: 10.1016/j.biortech.2021.124858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 05/13/2023]
Abstract
Microbial 1,2-propanediol production using renewable feedstock is a promising method for the sustainable production of value-added fuels and chemicals. We demonstrated the metabolically engineered Escherichia coli for improvement of 1,2-propanediol production using glucose and cellobiose. The deletion of competing pathways improved 1,2-propanediol production. To reduce carbon flux toward downstream glycolysis, the phosphotransferase system (PTS) was inactivated by ptsG gene deletion. The resultant strain, GL3/PD, produced 1.48 ± 0.01 g/L of 1,2-propanediol from 20 g/L of glucose. A sugar supply was engineered by coexpression of β-glucosidase (BGL). The strain expressing BGL produced 1,2-propanediol from cellobiose at a concentration of 0.90 ± 0.11 g/L with a yield of 0.15 ± 0.01 g/g glucose (cellobiose 1 g is equal to glucose 1.1 g). As cellobiose or cellooligosaccharides a carbon source, the feasibility of producing 1,2-propanediol using an E. coli strain engineered for β-glucosidase expression are demonstrated.
Collapse
Affiliation(s)
- Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryosuke Fujiwara
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
19
|
Verma R, Ellis JM, Mitchell-Koch KR. Dynamic Preference for NADP/H Cofactor Binding/Release in E. coli YqhD Oxidoreductase. Molecules 2021; 26:E270. [PMID: 33430436 PMCID: PMC7826944 DOI: 10.3390/molecules26020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
YqhD, an E. coli alcohol/aldehyde oxidoreductase, is an enzyme able to produce valuable bio-renewable fuels and fine chemicals from a broad range of starting materials. Herein, we report the first computational solution-phase structure-dynamics analysis of YqhD, shedding light on the effect of oxidized and reduced NADP/H cofactor binding on the conformational dynamics of the biocatalyst using molecular dynamics (MD) simulations. The cofactor oxidation states mainly influence the interdomain cleft region conformations of the YqhD monomers, involved in intricate cofactor binding and release. The ensemble of NADPH-bound monomers has a narrower average interdomain space resulting in more hydrogen bonds and rigid cofactor binding. NADP-bound YqhD fluctuates between open and closed conformations, while it was observed that NADPH-bound YqhD had slower opening/closing dynamics of the cofactor-binding cleft. In the light of enzyme kinetics and structural data, simulation findings have led us to postulate that the frequently sampled open conformation of the cofactor binding cleft with NADP leads to the more facile release of NADP while increased closed conformation sampling during NADPH binding enhances cofactor binding affinity and the aldehyde reductase activity of the enzyme.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
| | - Jonathan M. Ellis
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA;
| | - Katie R. Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
| |
Collapse
|
20
|
Wang J, Huang C, Guo K, Ma L, Meng X, Wang N, Huo YX. Converting Escherichia coli MG1655 into a chemical overproducer through inactivating defense system against exogenous DNA. Synth Syst Biotechnol 2020; 5:333-342. [PMID: 33102829 PMCID: PMC7568196 DOI: 10.1016/j.synbio.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023] Open
Abstract
Escherichia coli strain K-12 MG1655 has been proposed as an appropriate host strain for industrial production. However, the direct application of this strain suffers from the transformation inefficiency and plasmid instability. Herein, we conducted genetic modifications at a serial of loci of MG1655 genome, generating a robust and universal host strain JW128 with higher transformation efficiency and plasmid stability that can be used to efficiently produce desired chemicals after introducing the corresponding synthetic pathways. Using JW128 as the host, the titer of isobutanol reached 5.76 g/L in shake-flask fermentation, and the titer of lycopene reached 1.91 g/L in test-tube fermentation, 40-fold and 5-fold higher than that of original MG1655, respectively. These results demonstrated JW128 is a promising chassis for high-level production of value-added chemicals.
Collapse
Affiliation(s)
- Jingge Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
- SIP-UCLA Institute for Technology Advancement, 10 Yueliangwan Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Chaoyong Huang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Kai Guo
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Lianjie Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Xiangyu Meng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
- Corresponding author.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
- SIP-UCLA Institute for Technology Advancement, 10 Yueliangwan Road, Suzhou Industrial Park, Suzhou, 215123, China
- Corresponding author. Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
21
|
Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nat Commun 2020; 11:279. [PMID: 31937786 PMCID: PMC6959354 DOI: 10.1038/s41467-019-14024-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Glucose and xylose are the major components of lignocellulose. Effective utilization of both sugars can improve the efficiency of bioproduction. Here, we report a method termed parallel metabolic pathway engineering (PMPE) for producing shikimate pathway derivatives from glucose–xylose co-substrate. In this method, we seek to use glucose mainly for target chemical production, and xylose for supplying essential metabolites for cell growth. Glycolysis and the pentose phosphate pathway are completely separated from the tricarboxylic acid (TCA) cycle. To recover cell growth, we introduce a xylose catabolic pathway that directly flows into the TCA cycle. As a result, we can produce 4.09 g L−1cis,cis-muconic acid using the PMPE Escherichia coli strain with high yield (0.31 g g−1 of glucose) and produce l-tyrosine with 64% of the theoretical yield. The PMPE strategy can contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources. In lignocellulose biomass, microbes prefer consuming glucose over xylose, which affects target compound production. Here, the authors achieve simultaneous utilization of glucose and xylose for target chemical production and cell growth, respectively, and realize high-level production of shikimate pathway derivatives.
Collapse
|
22
|
Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli. Metab Eng 2019; 56:181-189. [DOI: 10.1016/j.ymben.2019.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
|
23
|
Sarma S, Ortega D, Minton NP, Dubey VK, Moholkar VS. Homologous overexpression of hydrogenase and glycerol dehydrogenase in Clostridium pasteurianum to enhance hydrogen production from crude glycerol. BIORESOURCE TECHNOLOGY 2019; 284:168-177. [PMID: 30933825 DOI: 10.1016/j.biortech.2019.03.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
This study reports engineering of a hypertransformable variant of C. pasteurianum for bioconversion of glycerol into hydrogen (H2). A functional glycerol-triggered hydrogen pathway was engineered based on two approaches: (1) increasing product yield by overexpression of immediate enzyme catalyzing H2 production, (2) increasing substrate uptake by overexpression of enzymes involved in glycerol utilization. The first strategy aimed at overexpression of hydA gene encoding hydrogenase, and the second one, through combination of overexpression of dhaD1 and dhaK genes encoding glycerol dehydrogenase and dihydroxyacetone kinase. These genetic manipulations resulted in two recombinant strains (hydA++/dhaD1K++) capable of producing 97% H2 (v/v), with yields of 1.1 mol H2/mol glycerol in hydA overexpressed strain, and 0.93 mol H2/mol glycerol in dhaD1K overexpressed strain, which was 1.5 fold higher than wild type. Among two strains, dhaD1K++ consumed more glycerol than hydA++ which proves that overexpression of glycerol enzymes has enhanced glycerol intake rate.
Collapse
Affiliation(s)
- Shyamali Sarma
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - David Ortega
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, Nottingham NG72RD, United Kingdom
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, Nottingham NG72RD, United Kingdom
| | - Vikash Kumar Dubey
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
24
|
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019; 37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
|
25
|
Luo Y, Zhao Q, Liu Q, Feng Y. An Artificial Biosynthetic Pathway for 2-Amino-1,3-Propanediol Production Using Metabolically Engineered Escherichia coli. ACS Synth Biol 2019; 8:548-556. [PMID: 30781944 DOI: 10.1021/acssynbio.8b00466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
2-Amino-1,3-propanediol (2-APD) is a chemical building block for the production of various value-added pharmaceuticals. However, the current manufacture of 2-APD predominantly relies on chemical processes by utilizing fossil fuel-derived and highly explosive raw materials. Herein, we established an artificial biosynthetic pathway for converting glucose to 2-APD in a metabolically engineered Escherichia coli. This artificial pathway employs an engineered heterogeneous aminotransferase RtxA for diverting dihydroxyacetone phosphate to generate 2-APD phosphate and an endogenous phosphatase for converting it into the target product 2-APD. Through fine-tuning the activity and solubility of RtxA for efficiently extending the glycolysis pathway, enhancing the metabolic recycling of amino-containing substrate supply via nitrogen-borrowing, and unlocking the dephosphorylation involved in the downstream pathway, the best metabolically engineered E. coli strain LYC-5 was constructed stepwise. Under aerobic conditions, a fed-batch fermentation of the strain LYC-5 produced 14.6 g/L 2-APD with a productivity of 0.122 g/L/h in a 6-L bioreactor, which was the highest reported titer to the best of our knowledge. This work demonstrates the great potential to provide an environmentally friendly and efficient approach for 2-APD production.
Collapse
Affiliation(s)
- Yuchang Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Qinqin Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
26
|
Zhu DQ, Wu JR, Zhan XB, Zhu L, Jiang Y. Enhanced N-acetyl-D-neuraminic production from glycerol and N-acetyl-D-glucosamine by metabolically engineered Escherichia coli with a two-stage pH-shift control strategy. J Ind Microbiol Biotechnol 2019; 46:125-132. [PMID: 30623269 DOI: 10.1007/s10295-018-02132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
Typical N-acetyl-D-neuraminic acid (Neu5Ac) production uses N-acetyl-D-glucosamine (GlcNAc) and excess pyruvate as substrates in the enzymatic or whole-cell biocatalysis process. In a previous study, a Neu5Ac-producing biocatalytic process via engineered Escherichia coli SA-05/pDTrc-AB/pCDF-pck-ppsA was constructed without exogenous pyruvate. In this study, glycerol was found to be a good energy source compared with glucose for the catalytic system with resting cells, and Neu5Ac production increased to 13.97 ± 0.27 g L-1. In addition, a two-stage pH shift strategy was carried out, and the Neu5Ac yield was improved to 14.61 ± 0.31 g L-1. The GlcNAc concentration for Neu5Ac production was optimized. Finally, an integrated strategy was developed for Neu5Ac production, and the Neu5Ac yield reached as high as 18.17 ± 0.27 g L-1. These results provide a new biocatalysis technology for Neu5Ac production without exogenous pyruvate.
Collapse
Affiliation(s)
- De-Qiang Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jian-Rong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Li Zhu
- Jiangsu Rayguang Biotech Co. Ltd., Wuxi, 214122, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
27
|
Niu W, Kramer L, Mueller J, Liu K, Guo J. Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid. Metab Eng Commun 2018; 8:e00082. [PMID: 30591904 PMCID: PMC6304458 DOI: 10.1016/j.mec.2018.e00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
1,2-propanediol (1,2-PDO) is an industrial chemical with a broad range of applications, such as the production of alkyd and unsaturated polyester resins. It is currently produced as a racemic mixture from nonrenewable petroleum-based feedstocks. We have reported a novel artificial pathway for the biosynthesis of 1,2-PDO via lactic acid isomers as the intermediates. The pathway circumvents the cytotoxicity issue caused by methylglyoxal intermediate in the naturally existing pathway. Successful E. coli bioconversion of lactic acid to 1,2-PDO was shown in previous report. Here, we demonstrated the engineering of E. coli host strains for the de novo biosynthesis of 1,2-PDO through this pathway. Under fermenter-controlled conditions, the R-1,2-PDO was produced at 17.3 g/L with a molar yield of 42.2% from glucose, while the S-isomer was produced at 9.3 g/L with a molar yield of 23.2%. The optical purities of the two isomers were 97.5% ee (R) and 99.3% ee (S), respectively. To the best of our knowledge, these are the highest titers of 1,2-PDO biosynthesized by either natural producer or engineered microbial strains that are published in peer-reviewed journals. 1,2-Propanediol is a commodity chemical in the productions of alkyd and high-performance, unsaturated polyesters. E. coli strains were engineered for biosyntheses of 1,2-propanediol from glucose via the reduction of lactic acids. The biosynthesis is stereospecific, which allowed the production of 1,2-propanediol stereoisomers with high optical purity. The highest reported titers of 17.3 g/L and 9.3 g/L were achieved for R-1,2-PDO and S-1,2-PDO, respectively.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical&Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Levi Kramer
- Department of Chemical&Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Joshua Mueller
- Department of Chemical&Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Kun Liu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
28
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
29
|
Tack ILMM, Nimmegeers P, Akkermans S, Logist F, Van Impe JFM. A low-complexity metabolic network model for the respiratory and fermentative metabolism of Escherichia coli. PLoS One 2018; 13:e0202565. [PMID: 30157229 PMCID: PMC6114798 DOI: 10.1371/journal.pone.0202565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Over the last decades, predictive microbiology has made significant advances in the mathematical description of microbial spoiler and pathogen dynamics in or on food products. Recently, the focus of predictive microbiology has shifted from a (semi-)empirical population-level approach towards mechanistic models including information about the intracellular metabolism in order to increase model accuracy and genericness. However, incorporation of this subpopulation-level information increases model complexity and, consequently, the required run time to simulate microbial cell and population dynamics. In this paper, results of metabolic flux balance analyses (FBA) with a genome-scale model are used to calibrate a low-complexity linear model describing the microbial growth and metabolite secretion rates of Escherichia coli as a function of the nutrient and oxygen uptake rate. Hence, the required information about the cellular metabolism (i.e., biomass growth and secretion of cell products) is selected and included in the linear model without incorporating the complete intracellular reaction network. However, the applied FBAs are only representative for microbial dynamics under specific extracellular conditions, viz., a neutral medium without weak acids at a temperature of 37℃. Deviations from these reference conditions lead to metabolic shifts and adjustments of the cellular nutrient uptake or maintenance requirements. This metabolic dependency on extracellular conditions has been taken into account in our low-complex metabolic model. In this way, a novel approach is developed to take the synergistic effects of temperature, pH, and undissociated acids on the cell metabolism into account. Consequently, the developed model is deployable as a tool to describe, predict and control E. coli dynamics in and on food products under various combinations of environmental conditions. To emphasize this point,three specific scenarios are elaborated: (i) aerobic respiration without production of weak acid extracellular metabolites, (ii) anaerobic fermentation with secretion of mixed acid fermentation products into the food environment, and (iii) respiro-fermentative metabolic regimes in between the behaviors at aerobic and anaerobic conditions.
Collapse
Affiliation(s)
| | | | - Simen Akkermans
- BioTeC+, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Filip Logist
- BioTeC+, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | | |
Collapse
|
30
|
Kallscheuer N. Engineered Microorganisms for the Production of Food Additives Approved by the European Union-A Systematic Analysis. Front Microbiol 2018; 9:1746. [PMID: 30123195 PMCID: PMC6085563 DOI: 10.3389/fmicb.2018.01746] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023] Open
Abstract
In the 1950s, the idea of a single harmonized list of food additives for the European Union arose. Already in 1962, the E-classification system, a robust food safety system intended to protect consumers from possible food-related risks, was introduced. Initially, it was restricted to colorants, but at later stages also preservatives, antioxidants, emulsifiers, stabilizers, thickeners, gelling agents, sweeteners, and flavorings were included. Currently, the list of substances authorized by the European Food Safety Authority (EFSA) (referred to as "E numbers") comprises 316 natural or artificial substances including small organic molecules, metals, salts, but also more complex compounds such as plant extracts and polymers. Low overall concentrations of such compounds in natural producers due to inherent regulation mechanisms or production processes based on non-regenerative carbon sources led to an increasing interest in establishing more reliable and sustainable production platforms. In this context, microorganisms have received significant attention as alternative sources providing access to these compounds. Scientific advancements in the fields of molecular biology and genetic engineering opened the door toward using engineered microorganisms for overproduction of metabolites of their carbon metabolism such as carboxylic acids and amino acids. In addition, entire pathways, e.g., of plant origin, were functionally introduced into microorganisms, which holds the promise to get access to an even broader range of accessible products. The aim of this review article is to give a systematic overview on current efforts during construction and application of microbial cell factories for the production of food additives listed in the EU "E numbers" catalog. The review is focused on metabolic engineering strategies of industrially relevant production hosts also discussing current bottlenecks in the underlying metabolic pathways and how they can be addressed in the future.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
31
|
Ni J, Tao F, Xu P, Yang C. Engineering Cyanobacteria for Photosynthetic Production of C3 Platform Chemicals and Terpenoids from CO 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:239-259. [PMID: 30091098 DOI: 10.1007/978-981-13-0854-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent years have witnessed a rising demand for bioproduced chemicals owing to restricted availability of petrochemical resources and increasing environmental concerns. Extensive efforts have been invested in the metabolic engineering of microorganisms for biosynthesis of chemicals and fuels. Among these, direct conversion of CO2 to chemicals by photoautotrophic microorganism cyanobacteria represents a green route with incredibly potent. Cyanobacteria have been engineered for the production of numerous biofuels and chemicals, such as 2,3-butanediol, fatty acids, isobutyraldehyde, and n-butanol. Under the current condition, it might be initially wiser to produce chemicals with higher value or higher yield. Photosynthetic production of C3 platform chemicals could withdraw carbon close to fixation to maximize the pool of available carbon, thus achieving the strong production rates. Photosynthetic production of terpenoids is another good choice due to the higher value of these compounds. Here, we review recent advances in generating C3 chemicals and valuable terpenoids from cyanobacteria.
Collapse
Affiliation(s)
- Jun Ni
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
32
|
Kawaguchi H, Ogino C, Kondo A. Microbial conversion of biomass into bio-based polymers. BIORESOURCE TECHNOLOGY 2017; 245:1664-1673. [PMID: 28688739 DOI: 10.1016/j.biortech.2017.06.135] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/19/2023]
Abstract
The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
33
|
Lange J, Müller F, Bernecker K, Dahmen N, Takors R, Blombach B. Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:277. [PMID: 29201141 PMCID: PMC5697356 DOI: 10.1186/s13068-017-0969-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND A future bioeconomy relies on the efficient use of renewable resources for energy and material product supply. In this context, biorefineries have been developed and play a key role in converting lignocellulosic residues. Although a holistic use of the biomass feed is desired, side streams evoke in current biorefinery approaches. To ensure profitability, efficiency, and sustainability of the overall conversion process, a meaningful valorization of these materials is needed. Here, a so far unexploited side stream derived from fast pyrolysis of wheat straw-pyrolysis water-was used for production of 1,2-propanediol in microbial fermentation with engineered Corynebacterium glutamicum. RESULTS A protocol for pretreatment of pyrolysis water was established and enabled growth on its major constituents, acetate and acetol, with rates up to 0.36 ± 0.04 h-1. To convert acetol to 1,2-propanediol, the plasmid pJULgldA expressing the glycerol dehydrogenase from Escherichia coli was introduced into C. glutamicum. 1,2-propanediol was formed in a growth-coupled biotransformation and production was further increased by construction of C. glutamicum Δpqo ΔaceE ΔldhA Δmdh pJULgldA. In a two-phase aerobic/microaerobic fed-batch process with pyrolysis water as substrate, this strain produced 18.3 ± 1.2 mM 1,2-propanediol with a yield of 0.96 ± 0.05 mol 1,2-propanediol per mol acetol and showed an overall volumetric productivity of 1.4 ± 0.1 mmol 1,2-propanediol L-1 h-1. CONCLUSIONS This study implements microbial fermentation into a biorefinery based on pyrolytic liquefaction of lignocellulosic biomass and accesses a novel value chain by valorizing the side stream pyrolysis water for 1,2-PDO production with engineered C. glutamicum. The established bioprocess operated at maximal product yield and accomplished the so far highest overall volumetric productivity for microbial 1,2-PDO production with an engineered producer strain. Besides, the results highlight the potential of microbial conversion of this biorefinery side stream to other valuable products.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Felix Müller
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Kerstin Bernecker
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nicolaus Dahmen
- Institute for Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
34
|
A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae. Metab Eng 2017; 44:223-235. [DOI: 10.1016/j.ymben.2017.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
|
35
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Coordination of metabolic pathways: Enhanced carbon conservation in 1,3-propanediol production by coupling with optically pure lactate biosynthesis. Metab Eng 2017; 41:102-114. [PMID: 28396036 DOI: 10.1016/j.ymben.2017.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
Metabolic engineering has emerged as a powerful tool for bioproduction of both fine and bulk chemicals. The natural coordination among different metabolic pathways contributes to the complexity of metabolic modification, which hampers the development of biorefineries. Herein, the coordination between the oxidative and reductive branches of glycerol metabolism was rearranged in Klebsiella oxytoca to improve the 1,3-propanediol production. After deliberating on the product value, carbon conservation, redox balance, biological compatibility and downstream processing, the lactate-producing pathway was chosen for coupling with the 1,3-propanediol-producing pathway. Then, the other pathways of 2,3-butanediol, ethanol, acetate, and succinate were blocked in sequence, leading to improved d-lactate biosynthesis, which as return drove the 1,3-propanediol production. Meanwhile, efficient co-production of 1,3-propanediol and l-lactate was also achieved by replacing ldhD with ldhL from Bacillus coagulans. The engineered strains PDL-5 and PLL co-produced over 70g/L 1,3-propanediol and over 100g/L optically pure d-lactate and l-lactate, respectively, with high conversion yields of over 0.95mol/mol from glycerol.
Collapse
|
37
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
38
|
Zhang Y, Liu D, Chen Z. Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:299. [PMID: 29255482 PMCID: PMC5727944 DOI: 10.1186/s13068-017-0992-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 05/17/2023]
Abstract
C2-C4 diols classically derived from fossil resource are very important bulk chemicals which have been used in a wide range of areas, including solvents, fuels, polymers, cosmetics, and pharmaceuticals. Production of C2-C4 diols from renewable resources has received significant interest in consideration of the reducing fossil resource and the increasing environmental issues. While bioproduction of certain diols like 1,3-propanediol has been commercialized in recent years, biosynthesis of many other important C2-C4 diol isomers is highly challenging due to the lack of natural synthesis pathways. Recent advances in synthetic biology have enabled the de novo design of completely new pathways to non-natural molecules from renewable feedstocks. In this study, we review recent advances in bioproduction of C2-C4 diols, focusing on new metabolic pathways and metabolic engineering strategies being developed. We also discuss the challenges and future trends toward the development of economically competitive processes for bio-based diol production.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
39
|
The aldehyde dehydrogenase, AldA, is essential for L-1,2-propanediol utilization in laboratory-evolved Escherichia coli. Microbiol Res 2017; 194:47-52. [DOI: 10.1016/j.micres.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 11/19/2022]
|
40
|
Patil Y, Junghare M, Müller N. Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production. Microb Biotechnol 2016; 10:203-217. [PMID: 28004884 PMCID: PMC5270724 DOI: 10.1111/1751-7915.12484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022] Open
Abstract
Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable 'coproduct'. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2-propanediol as coproducts. The bacterium offers certain advantages over previously studied glycerol-fermenting microorganisms. Anaerobium acetethylicum during growth with glycerol produces very little side products and grows in the presence of maximum glycerol concentrations up to 1500 mM and in the complete absence of complex organic supplements such as yeast extract or tryptone. The highest observed growth rate of 0.116 h-1 is similar to that of other glycerol degraders, and the maximum concentration of ethanol that can be tolerated was found to be about 60 mM (2.8 g l-1 ) and further growth was likely inhibited due to ethanol toxicity. Proteome analysis as well as enzyme assays performed in cell-free extracts demonstrated that glycerol is degraded via glyceraldehyde-3-phosphate, which is further metabolized through the lower part of glycolysis leading to formation of mainly ethanol and hydrogen. In conclusion, fermentation of glycerol to ethanol and hydrogen by this bacterium represents a remarkable option to add value to the biodiesel industries by utilization of surplus glycerol.
Collapse
Affiliation(s)
- Yogita Patil
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Madan Junghare
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany.,Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Nicolai Müller
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| |
Collapse
|
41
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Carbonyl Stress in Bacteria: Causes and Consequences. BIOCHEMISTRY (MOSCOW) 2016; 80:1655-71. [PMID: 26878572 DOI: 10.1134/s0006297915130039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pathways of synthesis of the α-reactive carbonyl compound methylglyoxal (MG) in prokaryotes are described in this review. Accumulation of MG leads to development of carbonyl stress. Some pathways of MG formation are similar for both pro- and eukaryotes, but there are reactions specific for prokaryotes, e.g. the methylglyoxal synthase reaction. This reaction and the glyoxalase system constitute an alternative pathway of glucose catabolism - the MG shunt not associated with the synthesis of ATP. In violation of the regulation of metabolism, the cell uses MG shunt as well as other glycolysis shunting pathways and futile cycles enabling stabilization of its energetic status. MG was first examined as a biologically active metabolic factor participating in the formation of phenotypic polymorphism and hyperpersistent potential of bacterial populations. The study of carbonyl stress is interesting for evolutionary biology and can be useful for constructing highly effective producer strains.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
42
|
Matsubara M, Urano N, Yamada S, Narutaki A, Fujii M, Kataoka M. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. J Biosci Bioeng 2016; 122:421-6. [DOI: 10.1016/j.jbiosc.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
43
|
Kalia VC, Prakash J, Koul S. Biorefinery for Glycerol Rich Biodiesel Industry Waste. Indian J Microbiol 2016; 56:113-25. [PMID: 27570302 DOI: 10.1007/s12088-016-0583-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|
44
|
Juhas M, Ajioka JW. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions. Microb Biotechnol 2016; 8:726-38. [PMID: 26074421 PMCID: PMC4476827 DOI: 10.1111/1751-7915.12296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/28/2022] Open
Abstract
The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP, Cambridge, UK
| | - James W Ajioka
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP, Cambridge, UK
| |
Collapse
|
45
|
Lee MJ, Brown IR, Juodeikis R, Frank S, Warren MJ. Employing bacterial microcompartment technology to engineer a shell-free enzyme-aggregate for enhanced 1,2-propanediol production in Escherichia coli. Metab Eng 2016; 36:48-56. [PMID: 26969252 PMCID: PMC4909751 DOI: 10.1016/j.ymben.2016.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Abstract
Bacterial microcompartments (BMCs) enhance the breakdown of metabolites such as 1,2-propanediol (1,2-PD) to propionic acid. The encapsulation of proteins within the BMC is mediated by the presence of targeting sequences. In an attempt to redesign the Pdu BMC into a 1,2-PD synthesising factory using glycerol as the starting material we added N-terminal targeting peptides to glycerol dehydrogenase, dihydroxyacetone kinase, methylglyoxal synthase and 1,2-propanediol oxidoreductase to allow their inclusion into an empty BMC. 1,2-PD producing strains containing the fused enzymes exhibit a 245% increase in product formation in comparison to un-tagged enzymes, irrespective of the presence of BMCs. Tagging of enzymes with targeting peptides results in the formation of dense protein aggregates within the cell that are shown by immuno-labelling to contain the vast majority of tagged proteins. It can therefore be concluded that these protein inclusions are metabolically active and facilitate the significant increase in product formation. Fusion of BMC targeting peptides to enzymes has a variable effect on activity. Tagged enzymes for 1,2-propanediol synthesis are localised to a BMC. BMC-targeted proteins localised within the BMC are protected from proteases. TEM reveals tagged enzymes form large intracellular protein aggregates. Strains with enzyme aggregates are shown to have enhanced 1,2-propanediol production.
Collapse
Affiliation(s)
- Matthew J Lee
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Ian R Brown
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Rokas Juodeikis
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Stefanie Frank
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
46
|
Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q. Synthesis of chemicals by metabolic engineering of microbes. Chem Soc Rev 2016; 44:3760-85. [PMID: 25940754 DOI: 10.1039/c5cs00159e] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic engineering is a powerful tool for the sustainable production of chemicals. Over the years, the exploration of microbial, animal and plant metabolism has generated a wealth of valuable genetic information. The prudent application of this knowledge on cellular metabolism and biochemistry has enabled the construction of novel metabolic pathways that do not exist in nature or enhance existing ones. The hand in hand development of computational technology, protein science and genetic manipulation tools has formed the basis of powerful emerging technologies that make the production of green chemicals and fuels a reality. Microbial production of chemicals is more feasible compared to plant and animal systems, due to simpler genetic make-up and amenable growth rates. Here, we summarize the recent progress in the synthesis of biofuels, value added chemicals, pharmaceuticals and nutraceuticals via metabolic engineering of microbes.
Collapse
Affiliation(s)
- Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15#, Beisanhuan East Road, Chaoyang District, Beijing 100029, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yao R, Xiong D, Hu H, Wakayama M, Yu W, Zhang X, Shimizu K. Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and (13)C metabolic flux analysis. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:175. [PMID: 27555881 PMCID: PMC4994220 DOI: 10.1186/s13068-016-0591-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/15/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glycerol, a byproduct of biodiesel, has become a readily available and inexpensive carbon source for the production of high-value products. However, the main drawback of glycerol utilization is the low consumption rate and shortage of NADPH formation, which may limit the production of NADPH-requiring products. To overcome these problems, we constructed a carbon catabolite repression-negative ΔptsGglpK* mutant by both blocking a key glucose PTS transporter and enhancing the glycerol conversion. The mutant can recover normal growth by co-utilization of glycerol and glucose after loss of glucose PTS transporter. To reveal the metabolic potential of the ΔptsGglpK* mutant, this study examined the flux distributions and regulation of the co-metabolism of glycerol and glucose in the mutant. RESULTS By labeling experiments using [1,3-(13)C]glycerol and [1-(13)C]glucose, (13)C metabolic flux analysis was employed to decipher the metabolisms of both the wild-type strain and the ΔptsGglpK* mutant in chemostat cultures. When cells were maintained at a low dilution rate (0.1 h(-1)), the two strains showed similar fluxome profiles. When the dilution rate was increased, both strains upgraded their pentose phosphate pathway, glycolysis and anaplerotic reactions, while the ΔptsGglpK* mutant was able to catabolize much more glycerol than glucose (more than tenfold higher). Compared with the wild-type strain, the mutant repressed its flux through the TCA cycle, resulting in higher acetate overflow. The regulation of fluxomes was consistent with transcriptional profiling of several key genes relevant to the TCA cycle and transhydrogenase, namely gltA, icdA, sdhA and pntA. In addition, cofactor fluxes and their pool sizes were determined. The ΔptsGglpK* mutant affected the redox NADPH/NADH state and reduced the ATP level. Redox signaling activated the ArcA regulatory system, which was responsible for TCA cycle repression. CONCLUSIONS This work employs both (13)C-MFA and transcription/metabolite analysis for quantitative investigation of the co-metabolism of glycerol and glucose in the ΔptsGglpK* mutant. The ArcA regulatory system dominates the control of flux redistribution. The ΔptsGglpK* mutant can be used as a platform for microbial cell factories for the production of biofuels and biochemicals, since most of fuel molecule (e.g., alcohols) synthesis requires excess reducing equivalents.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Dewang Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Masataka Wakayama
- Institute for Advanced Biosciences, Keio University, 246-2, Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052 Japan
| | - Wenjuan Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Kazuyuki Shimizu
- Institute for Advanced Biosciences, Keio University, 246-2, Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052 Japan
| |
Collapse
|
48
|
Chen Z, Liu D. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:205. [PMID: 27729943 PMCID: PMC5048440 DOI: 10.1186/s13068-016-0625-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/24/2016] [Indexed: 05/03/2023]
Abstract
As an inevitable by-product of the biofuel industry, glycerol is becoming an attractive feedstock for biorefinery due to its abundance, low price and high degree of reduction. Converting crude glycerol into value-added products is important to increase the economic viability of the biofuel industry. Metabolic engineering of industrial strains to improve its performance and to enlarge the product spectrum of glycerol biotransformation process is highly important toward glycerol biorefinery. This review focuses on recent metabolic engineering efforts as well as challenges involved in the utilization of glycerol as feedstock for the production of fuels and chemicals, especially for the production of diols, organic acids and biofuels.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| |
Collapse
|
49
|
Huang D, Wang R, Du W, Wang G, Xia M. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol. BIORESOURCE TECHNOLOGY 2015; 196:263-272. [PMID: 26253910 DOI: 10.1016/j.biortech.2015.07.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Rhizopus oryzae is strictly inhibited by biodiesel-based by-product crude glycerol, which results in low fumaric acid production. In this study, evolutionary engineering was employed to activate the glycerol utilization pathway for fumaric acid production. An evolved strain G80 was selected, which could tolerate and utilize high concentrations of crude glycerol to produce 14.9g/L fumaric acid with a yield of 0.248g/g glycerol. Key enzymes activity analysis revealed that the evolved strain displayed a significant upregulation in glycerol dissimilation, pyruvate consumption and reductive tricarboxylic acid pathways, compared with the parent strain. Subsequently, intracellular metabolic profiling analysis showed that amino acid biosynthesis, tricarboxylic acid cycle, fatty acid and stress response metabolites accounted for metabolic difference between two strains. Moreover, a glycerol fed-batch strategy was optimized to obtain the highest fumaric acid production of 25.5g/L, significantly increased by 20.9-fold than that of the parent strain of 1.2g/L.
Collapse
Affiliation(s)
- Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| | - Ru Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, PR China
| | - Wenjie Du
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, PR China
| | - Guanyi Wang
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, PR China
| | - Menglei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| |
Collapse
|
50
|
Fermentative production of enantiomerically pure S-1,2-propanediol from glucose by engineered E. coli strain. Appl Microbiol Biotechnol 2015; 100:1241-1251. [DOI: 10.1007/s00253-015-7034-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
|