1
|
Grimm HC, Erlsbacher P, Medipally H, Malihan-Yap L, Sovic L, Zöhrer J, Kosourov SN, Allahverdiyeva Y, Paul CE, Kourist R. Towards high atom economy in whole-cell redox biocatalysis: up-scaling light-driven cyanobacterial ene-reductions in a flat panel photobioreactor. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2025; 27:2907-2920. [PMID: 39850125 PMCID: PMC11749524 DOI: 10.1039/d4gc05686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities. The genes of five ene-reductases from different classes were expressed in Synechocystis sp. PCC 6803. The strains were characterised in the light-driven reduction of a set of prochiral substrates. With specific activities up to 150 U gCDW -1 under standard conditions in small-scale reactions, the recombinant strains harbouring the ene-reductases TsOYE C25G I67T and OYE3 showed the highest specific activities observed so far in photobiotransformations and were selected for the up-scale in the flat panel photobioreactor in 120 mL-scale. The strain producing OYE3 exhibited a specific activity as high as 56.1 U gCDW -1. The corresponding volumetric productivity of 1 g L-1 h-1 compares favourably to other photosynthesis-driven processes. This setup facilitated the conversion of 50 mM over approximately 8 hours to an isolated yield of 87%. The atom economy of 88% compares favourably to the use of the sacrificial co-substrates glucose and formic acid with 49% and 78%, respectively. Determination of the complete E-Factor of 203 including water reveals that the volumetric yield and water required for cultivation are crucial for the sustainability. In summary, our results point out key factors for the sustainability of light-driven whole-cell biotransformations, and provide a solid basis for future optimisation and up-scale campaigns of photosynthesis-driven bioproduction.
Collapse
Affiliation(s)
- Hanna C Grimm
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Peter Erlsbacher
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Hitesh Medipally
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Lenny Malihan-Yap
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Lucija Sovic
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Johannes Zöhrer
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Sergey N Kosourov
- Molecular Plant Biology, Department of Life Technologies, University of Turku 20014 Turku Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku 20014 Turku Finland
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Robert Kourist
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
- acib GmbH Krenngasse 37 8010 Graz Austria
| |
Collapse
|
2
|
Kim IJ, Brack Y, Bayer T, Bornscheuer UT. Two novel cyanobacterial α-dioxygenases for the biosynthesis of fatty aldehydes. Appl Microbiol Biotechnol 2021; 106:197-210. [PMID: 34882252 PMCID: PMC8720084 DOI: 10.1007/s00253-021-11724-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022]
Abstract
α-Dioxygenases (α-DOXs) are known as plant enzymes involved in the α-oxidation of fatty acids through which fatty aldehydes, with a high commercial value as flavor and fragrance compounds, are synthesized as products. Currently, little is known about α-DOXs from non-plant organisms. The phylogenic analysis reported here identified a substantial number of α-DOX enzymes across various taxa. Here, we report the functional characterization and Escherichia coli whole-cell application of two novel α-DOXs identified from cyanobacteria: CalDOX from Calothrix parietina and LepDOX from Leptolyngbya sp. The catalytic behavior of the recombinantly expressed CalDOX and LepDOX revealed that they are heme-dependent like plant α-DOXs but exhibit activities toward medium carbon fatty acids ranging from C10 to C14 unlike plant α-DOXs. The in-depth molecular investigation of cyanobacterial α-DOXs and their application in an E. coli whole system employed in this study is useful not only for the understanding of the molecular function of α-DOXs, but also for their industrial utilization in fatty aldehyde biosynthesis. Key points • Two novel α-dioxygenases from Cyanobacteria are reported • Both enzymes prefer medium-chain fatty acids • Both enzymes are useful for fatty aldehyde biosynthesis
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Yannik Brack
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Thomas Bayer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
3
|
Rapp C, Nidetzky B, Kratzer R. Pushing the limits: Cyclodextrin-based intensification of bioreductions. J Biotechnol 2020; 325:57-64. [PMID: 33220340 DOI: 10.1016/j.jbiotec.2020.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
The asymmetric reduction of ketones is a frequently used synthesis route towards chiral alcohols. Amongst available chemo- and biocatalysts the latter stand out in terms of product enantiopurity. Their application is, however, restricted by low reaction output, often rooted in limited enzyme stability under operational conditions. Here, addition of 2-hydroxypropyl-β-cyclodextrin to bioreductions of o-chloroacetophenone enabled product concentrations of up to 29 % w/v at full conversion and 99.97 % e.e. The catalyst was an E. coli strain co-expressing NADH-dependent Candida tenuis xylose reductase and a yeast formate dehydrogenase for coenzyme recycling. Analysis of the lyophilized biocatalyst showed that E. coli cells were leaky with catalytic activity found as free-floating enzymes and associated with the biomass. The biocatalyst was stabilized and activated in the reaction mixture by 2-hydroxypropyl-β-cyclodextrin. Substitution of the wild-type xylose reductase by a D51A mutant further improved bioreductions. In previous optimization strategies, hexane was added as second phase to protect the labile catalyst from adverse effects of hydrophobic substrate and product. The addition of 2-hydroxypropyl-β-cyclodextrin (11 % w/v) instead of hexane (20 % v/v) increased the yield on biocatalyst 6.3-fold. A literature survey suggests that bioreduction enhancement by addition of cyclodextrins is not restricted to specific enzyme classes, catalyst forms or substrates.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010 Graz, Austria.
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria.
| |
Collapse
|
4
|
Polakovič M, Švitel J, Bučko M, Filip J, Neděla V, Ansorge-Schumacher MB, Gemeiner P. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications. Biotechnol Lett 2017; 39:667-683. [PMID: 28181062 DOI: 10.1007/s10529-017-2300-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/01/2017] [Indexed: 11/28/2022]
Abstract
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.
Collapse
Affiliation(s)
- Milan Polakovič
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Juraj Švitel
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Filip
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Vilém Neděla
- Institute of Scientific Instruments, Academy of Sciences Czech Republic, Brno, Czech Republic
| | | | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
5
|
Li H, Li Z, Ruan G, Yu Y, Liu X. Asymmetric reduction of acetophenone into R -(+)-1-phenylethanol by endophytic fungus Neofusicoccum parvum BYEF07 isolated from Illicium verum. Biochem Biophys Res Commun 2016; 473:874-878. [DOI: 10.1016/j.bbrc.2016.03.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
6
|
Wang D, Yang Z, Zhang J, Han Y, Hao J, He L. The Asymmetric Reduction of Acetophenone and Its Derivatives to (S)-Aromatic Secondary Alcohols by Rhodotorula mucilaginosa CCTCC M2014255 Resting Cells. Catal Letters 2016. [DOI: 10.1007/s10562-016-1730-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Kratzer R, Woodley JM, Nidetzky B. Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions. Biotechnol Adv 2015; 33:1641-52. [PMID: 26343336 PMCID: PMC5414839 DOI: 10.1016/j.biotechadv.2015.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022]
Abstract
Access to chiral alcohols of high optical purity is today frequently provided by the enzymatic reduction of precursor ketones. However, bioreductions are complicated by the need for reducing equivalents in the form of NAD(P)H. The high price and molecular weight of NAD(P)H necessitate in situ recycling of catalytic quantities, which is mostly accomplished by enzymatic oxidation of a cheap co-substrate. The coupled oxidoreduction can be either performed by free enzymes in solution or by whole cells. Reductase selection, the decision between cell-free and whole cell reduction system, coenzyme recycling mode and reaction conditions represent design options that strongly affect bioreduction efficiency. In this paper, each option was critically scrutinized and decision rules formulated based on well-described literature examples. The development chain was visualized as a decision-tree that can be used to identify the most promising route towards the production of a specific chiral alcohol. General methods, applications and bottlenecks in the set-up are presented and key experiments required to "test" for decision-making attributes are defined. The reduction of o-chloroacetophenone to (S)-1-(2-chlorophenyl)ethanol was used as one example to demonstrate all the development steps. Detailed analysis of reported large scale bioreductions identified product isolation as a major bottleneck in process design.
Collapse
Affiliation(s)
- Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria.
| | - John M Woodley
- CAPEC-PROCESS Research Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria.
| |
Collapse
|
8
|
Deng J, Chen K, Yao Z, Lin J, Wei D. Efficient synthesis of optically active halogenated aryl alcohols at high substrate load using a recombinant carbonyl reductase from Gluconobacter oxydans. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Krump C, Vogl M, Brecker L, Nidetzky B, Kratzer R. Acceleration of an aldo-keto reductase by minimal loop engineering. Protein Eng Des Sel 2015; 27:245-8. [PMID: 24951537 PMCID: PMC4064709 DOI: 10.1093/protein/gzu021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aldo-keto reductases tighten coenzyme binding by forming a hydrogen bond across the pyrophosphate group of NAD(P)(H). Mutation of the hydrogen bonding anchor Lys24 in Candida tenuis xylose reductase prevents fastening of the “safety belt” around NAD(H). The loosened NAD(H) binding leads to increased turnover numbers (kcat) for reductions of bulky-bulky ketones at constant substrate and coenzyme affinities (i.e. Km Ketone, Km NADH).
Collapse
Affiliation(s)
- C Krump
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Member of NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - M Vogl
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - L Brecker
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - B Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Member of NAWI Graz, Petersgasse 12, 8010 Graz, Austria Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - R Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Member of NAWI Graz, Petersgasse 12, 8010 Graz, Austria Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
10
|
Spatially programmed assembling of oxidoreductases with single-stranded DNA for cofactor-required reactions. Appl Microbiol Biotechnol 2014; 99:3469-77. [DOI: 10.1007/s00253-014-6172-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
11
|
Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production. Microb Cell Fact 2013; 12:103. [PMID: 24209782 PMCID: PMC3831814 DOI: 10.1186/1475-2859-12-103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/05/2013] [Indexed: 01/29/2023] Open
Abstract
Background Whole-cell redox biocatalysis has been intensively explored for the production of valuable compounds because excellent selectivity is routinely achieved. Although the cellular cofactor level, redox state and the corresponding enzymatic activity are expected to have major effects on the performance of the biocatalysts, our ability remains limited to predict the outcome upon variation of those factors as well as the relationship among them. Results In order to investigate the effects of cofactor availability on whole-cell redox biocatalysis, we devised recombinant Escherichia coli strains for the production of dihydroxyacetone (DHA) catalyzed by the NAD+-dependent glycerol dehydrogenase (GldA). In this model system, a water-forming NAD+ oxidase (NOX) and a NAD+ transporter (NTT4) were also co-expressed for cofactor regeneration and extracellular NAD+ uptake, respectively. We found that cellular cofactor level, NAD+/NADH ratio and NOX activity were not only strain-dependent, but also growth condition-dependent, leading to significant differences in specific DHA titer among different whole-cell biocatalysts. The host E. coli DH5α had the highest DHA specific titer of 0.81 g/gDCW with the highest NAD+/NADH ratio of 6.7 and NOX activity of 3900 U. The biocatalyst had a higher activity when induced with IPTG at 37°C for 8 h compared with those at 30°C for 8 h and 18 h. When cells were transformed with the ntt4 gene, feeding NAD+ during the cell culture stage increased cellular NAD(H) level by 1.44 fold and DHA specific titer by 1.58 fold to 2.13 g/gDCW. Supplementing NAD+ during the biotransformation stage was also beneficial to cellular NAD(H) level and DHA production, and the highest DHA productivity reached 0.76 g/gDCW/h. Cellular NAD(H) level, NAD+/NADH ratio, and NOX and GldA activity dropped over time during the biotransformation process. Conclusions High NAD+/NADH ratio driving by NOX was very important for DHA production. Once cofactor was efficiently cycled, high cellular NAD(H) level was also beneficial for whole-cell redox biocatalysis. Our results indicated that NAD+ transporter could be applied to manipulate redox cofactor level for biocatalysis. Moreover, we suggested that genetically designed redox transformation should be carefully profiled for further optimizing whole-cell biocatalysis.
Collapse
|
12
|
Eixelsberger T, Woodley JM, Nidetzky B, Kratzer R. Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: Economic evaluation of whole cell-catalyzed reduction ofo-Chloroacetophenone. Biotechnol Bioeng 2013; 110:2311-5. [DOI: 10.1002/bit.24896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 11/07/2022]
|
13
|
Bioconversion process for synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using liquid-core immobilized Saccharomyces cerevisiae CGMCC No 2233. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-012-0093-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Bolivar JM, Consolati T, Mayr T, Nidetzky B. Shine a light on immobilized enzymes: real-time sensing in solid supported biocatalysts. Trends Biotechnol 2013; 31:194-203. [PMID: 23384504 DOI: 10.1016/j.tibtech.2013.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/06/2013] [Accepted: 01/07/2013] [Indexed: 01/01/2023]
Abstract
Enzyme immobilization on solid supports has been key to biotransformation development. Although technologies for immobilization have largely reached maturity, the resulting biocatalysts are not well understood mechanistically. One limitation is that their internal environment is usually inferred from external data. Therefore, biological consequences of the immobilization remain masked by physical effects of mass transfer, obstructing further development. Work reviewed herein shows that opto-chemical sensing performed directly within the solid support enables the biocatalyst's internal environment to be uncovered quantitatively and in real time. Non-invasive methods of intraparticle pH and O2 determination are presented, and their use as process analytical tools for development of heterogeneous biocatalysts is described. Method diversification to other analytes remains a challenging task for the future.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
15
|
Vogl M, Brecker L. Substrate binding to Candida tenuis xylose reductase during catalysis. RSC Adv 2013. [DOI: 10.1039/c3ra41448e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Vogl M, Kratzer R, Nidetzky B, Brecker L. Candida tenuis
Xylose Reductase Catalyzed Reduction of Aryl Ketones for Enantioselective Synthesis of Active Oxetine Derivatives. Chirality 2012; 24:847-53. [DOI: 10.1002/chir.22082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/16/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Vogl
- Department of Organic Chemistry; University of Vienna; Wien Austria
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; Graz Austria
| | - Lothar Brecker
- Department of Organic Chemistry; University of Vienna; Wien Austria
| |
Collapse
|
18
|
Zhang BB, Lou WY, Chen WJ, Zong MH. Efficient asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one by Candida parapsilosis cells in an ionic liquid-containing system. PLoS One 2012; 7:e37641. [PMID: 22662183 PMCID: PMC3360755 DOI: 10.1371/journal.pone.0037641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/26/2012] [Indexed: 12/01/2022] Open
Abstract
Hydrophilic ionic liquids (ILs) were employed as green solvents to construct an IL-containing co-solvent system for improving the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one by immobilized Candida parapsilosis cells. Among 14 hydrophilic ILs examined, 1-(2'-hydroxyl)ethyl-3-methylimidazolium nitrate (C(2)OHMIM·NO(3)) was considered as the most suitable IL for the bioreduction with the fastest initial reaction rate, the highest yield and the highest product e.e., which may be due to the good biocompatibility with the cells. For a better understanding of the bioreduction performed in the C(2)OHMIM·NO(3)-containing co-solvent system, the effects of several crucial variables were systematically investigated. The optimal C(2)OHMIM·NO(3) content, substrate concentration, buffer pH, co-substrate concentration and temperature were 10% (v/v), 3.0 mmol/L, 5.0, 98.1 mmol/L and 30°C, respectively. Under the optimal conditions, the initial reaction rate, the maximum yield and the product e.e. were 17.3 µmol/h g(cell), 95.2% and >99.9%, respectively, which are much better than the corresponding results previously reported. Moreover, the immobilized cells remained more than 83% of their initial activity even after being used repeatedly for 10 batches in the C(2)OHMIM·NO(3)-containing system, exhibiting excellent operational stability.
Collapse
Affiliation(s)
- Bo-Bo Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Wen-Yong Lou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Wen-Jing Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
19
|
Boivin WA, Shackleford M, Vanden Hoek A, Zhao H, Hackett TL, Knight DA, Granville DJ. Granzyme B cleaves decorin, biglycan and soluble betaglycan, releasing active transforming growth factor-β1. PLoS One 2012; 7:e33163. [PMID: 22479366 PMCID: PMC3316562 DOI: 10.1371/journal.pone.0033163] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 02/10/2012] [Indexed: 11/18/2022] Open
Abstract
Objective Granzyme B (GrB) is a pro-apoptotic serine protease that contributes to immune-mediated target cell apoptosis. However, during inflammation, GrB accumulates in the extracellular space, retains its activity, and is capable of cleaving extracellular matrix (ECM) proteins. Recent studies have implicated a pathogenic extracellular role for GrB in cardiovascular disease, yet the pathophysiological consequences of extracellular GrB activity remain largely unknown. The objective of this study was to identify proteoglycan (PG) substrates of GrB and examine the ability of GrB to release PG-sequestered TGF-β1 into the extracellular milieu. Methods/Results Three extracellular GrB PG substrates were identified; decorin, biglycan and betaglycan. As all of these PGs sequester active TGF-β1, cytokine release assays were conducted to establish if GrB-mediated PG cleavage induced TGF-β1 release. Our data confirmed that GrB liberated TGF-β1 from all three substrates as well as from endogenous ECM and this process was inhibited by the GrB inhibitor 3,4-dichloroisocoumarin. The released TGF-β1 retained its activity as indicated by the induction of SMAD-3 phosphorylation in human coronary artery smooth muscle cells. Conclusion In addition to contributing to ECM degradation and the loss of tissue structural integrity in vivo, increased extracellular GrB activity is also capable of inducing the release of active TGF-β1 from PGs.
Collapse
MESH Headings
- Biglycan/metabolism
- Biocatalysis/drug effects
- Blotting, Western
- Cells, Cultured
- Coumarins/pharmacology
- Decorin/metabolism
- Extracellular Matrix/metabolism
- Extracellular Space/metabolism
- Granzymes/antagonists & inhibitors
- Granzymes/metabolism
- Humans
- Isocoumarins
- Kinetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation/drug effects
- Proteoglycans/chemistry
- Proteoglycans/metabolism
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/metabolism
- Serine Proteinase Inhibitors/pharmacology
- Smad3 Protein/metabolism
- Solubility
- Substrate Specificity
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Wendy A. Boivin
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marlo Shackleford
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Amanda Vanden Hoek
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongyan Zhao
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tillie L. Hackett
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Darryl A. Knight
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J. Granville
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
20
|
Mädje K, Schmölzer K, Nidetzky B, Kratzer R. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH. Microb Cell Fact 2012; 11:7. [PMID: 22236335 PMCID: PMC3278346 DOI: 10.1186/1475-2859-11-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/11/2012] [Indexed: 11/29/2022] Open
Abstract
Background Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(P)H. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH), presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S)-1-(2-chlorophenyl)ethanol from o-chloroacetophenone. Results As compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3) that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR) resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C) brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by just 19% (1140 U/gCDW). The E. coli whole-cell catalyst optimized for intracellular FDH activity showed improved performance in the synthesis of (S)-1-(2-chlorophenyl)ethanol, reflected in a substantial, up to 5-fold enhancement of productivity (0.37 g/gCDW) and yield (95% based on 100 mM ketone used) as compared to the reference catalyst. For xylitol production, the benefit of enhanced FDH expression was observed on productivity only after elimination of the mass transfer resistance caused by the cell membrane. Conclusions Expression engineering of C. boidinii FDH is an important strategy to optimize E. coli whole-cell reductase catalysts that employ intracellular formate oxidation for regeneration of NADH. Increased FDH-activity was reflected by higher reduction yields of D-xylose and o-chloroacetophenone conversions provided that mass transfer limitations were overcome.
Collapse
Affiliation(s)
- Katharina Mädje
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology (TUG), Petersgasse 12/1, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
21
|
Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD(+)-auxotrophic mutant. Appl Environ Microbiol 2011; 77:6133-40. [PMID: 21742902 DOI: 10.1128/aem.00630-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD (NAD(+)) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD(+) level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD(+) auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD(+) de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD(+). We then constructed the NAD(+)-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD(+) biosynthesis in cells harboring the ntt4 gene. The minimal NAD(+) level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD(+), while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD(+) was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD(+) concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed.
Collapse
|
22
|
Vogl M, Kratzer R, Nidetzky B, Brecker L. Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Org Biomol Chem 2011; 9:5863-70. [DOI: 10.1039/c1ob05510k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|