1
|
Ke X, Dong HD, Zhao XM, Wang XX, Liu ZQ, Zheng YG. Functional Expression and Construction of a Self-Sufficient Cytochrome P450 Chimera for Efficient Steroidal C14α Hydroxylation in Escherichia coli. Biotechnol Bioeng 2025; 122:724-735. [PMID: 39702940 DOI: 10.1002/bit.28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
C14-functionalized steroids enabled diverse biological activities in anti-gonadotropin and anticancer therapy. However, access to C14-functionalized steroids was impeded by the deficiency of chemical synthetic methods. Recently, several membrane-bound fungal cytochrome P450s (CYPs) have been identified with steroid C14α-hydroxylation activity. However, the lack of efficient heterologous overexpression strategy hampered their further characterization and molecular engineering. In the present study, sequences of fungi-derived CYP genes encoding putative 14α-hydroxylase were selected and bioinformatically analyzed. Substitution of the N-terminal hydrophobic helix by a soluble maltose binding protein tag significantly enhanced the soluble expression level in Escherichia coli. A novel CYP originated from Bipolaris oryzae was discovered with high steroidal C14α-hydroxylation activity when coupled with the redox partner CPRlun. A catalytically self-sufficient chimeric CYP-CPR was built by intramolecular fusion, and the electronic transfer rate was improved. A coenzyme NADPH regeneration system was finally constructed by the co-expression of glucose dehydrogenase. The developed soluble multi-enzyme cascade biotransformation system supported the selective C14α-hydroxylation toward progesterone with a final titer of 34.54 mg/L, the highest level achieved in E. coli-based heterologous expression system. This study provides insightful ideas on the functional expression of fungi-derived CYPs and promises an efficient C14α-hydroxylation system for steroidal drugs through protein engineering.
Collapse
Affiliation(s)
- Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hong-Duo Dong
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xi-Man Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Du Y, Tian H, Li J, Gao J, Liu W, Lu F, Qin HM, Mao S. A Novel A105Y Mutant of CYP17A1 Exhibits Almost Perfect Regioselectivity in the Production of 17α-Hydroxyprogesterone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24609-24619. [PMID: 39440611 DOI: 10.1021/acs.jafc.4c05982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
17α-Hydroxyprogesterone (17α-OHP) is a steroid hormone with significant biological activity that can be obtained by catalyzing progesterone (PROG), the main product of sitosterol, through CYP17A1. However, increasing the catalytic specificity of HCYP17A1 for C17 hydroxylation of progesterone (PROG) poses a formidable challenge due to the close proximity of the C16 and C17 positions. In this study, a rational design was utilized to alter the spatial configuration of the substrate channel, leading to the complete abolition of its 16-hydroxylation activity. Subsequent molecular dynamics simulations revealed that the A105Y mutation heightened the rigidity of the G95-I112 region of CYP17A1, consequently regulating the direction of the entry of PROG into the catalytic pocket. Moreover, the establishment of hydrogen bonding between Y105 and R239, coupled with Pi-stacking of A105Y with F114, effectively immobilizes the substrate PROG in a fixed position, explaining the practically perfect regioselectivity observed in A105Y. Finally, a multifaceted enzymatic cascade system, incorporating A105Y, cytochrome P450 reductase (CPR), and glucose-6-phosphate dehydrogenase (ZWF) for NADPH cofactor regeneration, was constructed in Pichia pastoris GS115. The resulting biocatalyst produced 106 ± 3.2 mg L-1 17α-OHP, a 4.6-fold increase compared with A105Y alone. Thus, this study provides valuable insights for improving the regioselectivity and activity of P450 enzymes.
Collapse
Affiliation(s)
- Yuyao Du
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huan Tian
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jie Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jikai Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
3
|
Highly Efficient Biosynthesis of Nicotinic Acid by Immobilized Whole Cells of E. coli Expressing Nitrilase in Semi-Continuous Packed-Bed Bioreactor. Catalysts 2023. [DOI: 10.3390/catal13020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
A recombinant E. coli, expressing nitrilase from Acidovorax facilis 72W with dual-site expression plasmid pRSFduet (E. coli pRSF-AfNit2), was constructed. It showed higher soluble expression of nitrilase than that in the pET21a plasmid. The recombinant nitrilase can efficiently catalyze the hydrolysis of 3-cyanopyridine to nicotinic acid. The whole cells of E. coli pRSF-AfNit2 were immobilized by using sodium alginate/glutaraldehyde/polyethylene imine as the best immobilized reagents. The immobilized cells showed 95% activity recovery and excellent mechanical strength, with improved thermal stability and pH stability. They also retained 82% of initial activity after nearly two months of storage at 4 °C. A semi-continuous packed-bed bioreactor (sPBR) filled with the immobilized cells was studied for efficient production of nicotinic acid. After optimization, the highest space–time yield of 1576 g/(L·d) was obtained on 0.8 M substrate concentration at 2 mL/min of flow rate. The sPBR was repeatedly operated for 41 batches, keeping 100% conversion in the presence of 30 mM CaCl2. Finally, 95 g of nicotinic acid were obtained at 90% yield after separation and purification. The developed technology has potential application value.
Collapse
|
4
|
Hu KS, Chen CL, Ding HR, Wang TY, Zhu Q, Zhou YC, Chen JM, Mei JQ, Hu S, Huang J, Zhao WR, Mei LH. Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions. Molecules 2022; 27:molecules27186088. [PMID: 36144828 PMCID: PMC9501478 DOI: 10.3390/molecules27186088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Salvianic acid A (SAA), as the main bioactive component of the traditional Chinese herb Salvia miltiorrhiza, has important application value in the treatment of cardiovascular diseases. In this study, a two-step bioprocess for the preparation of SAA from l-DOPA was developed. In the first step, l-DOPA was transformed to 3,4-dihydroxyphenylalanine (DHPPA) using engineered Escherichia coli cells expressing membrane-bound L-amino acid deaminase from Proteus vulgaris. After that, the unpurified DHPPA was directly converted into SAA by permeabilized recombinant E. coli cells co-expressing d-lactate dehydrogenase from Pediococcus acidilactici and formate dehydrogenase from Mycobacterium vaccae N10. Under optimized conditions, 48.3 mM of SAA could be prepared from 50 mM of l-DOPA, with a yield of 96.6%. Therefore, the bioprocess developed here was not only environmentally friendly, but also exhibited excellent production efficiency and, thus, is promising for industrial SAA production.
Collapse
Affiliation(s)
- Ke Shun Hu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chong Le Chen
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Huan Ru Ding
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Tian Yu Wang
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Qin Zhu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Yi Chen Zhou
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jia Min Chen
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jia Qi Mei
- Hangzhou Huadong Medicine Group Co. Ltd., Hangzhou 310011, China
| | - Sheng Hu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jun Huang
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wei Rui Zhao
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Correspondence: (W.R.Z.); (L.H.M.); Tel.: +86-574-881-301-30 (W.R.Z.); +86-571-879-531-61(L.H.M.)
| | - Le He Mei
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
- Correspondence: (W.R.Z.); (L.H.M.); Tel.: +86-574-881-301-30 (W.R.Z.); +86-571-879-531-61(L.H.M.)
| |
Collapse
|
5
|
Identification of a novel cytochrome P450 17A2 enzyme catalyzing the C17α hydroxylation of progesterone and its application in engineered Pichia pastoris. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Enhancing the production of physiologically active vitamin D 3 by engineering the hydroxylase CYP105A1 and the electron transport chain. World J Microbiol Biotechnol 2021; 38:14. [PMID: 34877634 DOI: 10.1007/s11274-021-03193-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
In this study, the conversion of vitamin D3 (VD3) to its two active forms 25(OH)VD3 and 1α, 25(OH)2VD3 was carried out by engineering the hydroxylase CYP105A1 and its redox partners Fdx and Fdr. CYP105A1 and Fdx-Fdr were respectively expressed in E. coli BL21(DE3) and purified. The electron transport chain Fdx-Fdr had higher selectivity for the coenzyme NADH than NADPH. HPLC analysis showed that CYP105A1 could hydroxylate the C25 and C1α sites of VD3 and convert VD3 to its active forms. Finally, a one-bacterium-multi-enzyme system was constructed and used in whole-cell catalytic experiments. The results indicated that 2.491 mg/L of 25(OH)VD3 and 0.698 mg/L of 1α, 25(OH)2VD3 were successfully produced under the condition of 1.0% co-solvent DMSO, 1 mM coenzyme NADH and 35 g/L biocatalyst loading. This study contributes to a basis for the industrial production of active VD3 in future.
Collapse
|
7
|
Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnol Adv 2020; 40:107504. [PMID: 31926255 DOI: 10.1016/j.biotechadv.2020.107504] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022]
Abstract
Cytochrome P450s (CYPs) are heme-thiolated enzymes that catalyze the oxidation of CH bonds in a regio and stereoselective manner. Activation of the non-activated carbon atom can be further enhanced by multistep chemo-enzymatic reactions; moreover, several useful chemicals can be synthesized to provide alternative organic synthesis routes. Given their versatile functionality, CYPs show promise in a number of biotechnological fields. Recently, various CYPs, along with their sequences and functionalities, have been identified owing to rapid developments in sequencing technology and molecular biotechnology. In addition to these discoveries, attempts have been made to utilize CYPs to industrially produce biochemicals from available and sustainable bioresources such as oil, amino acids, carbohydrates, and lignin. Here, these accomplishments, particularly those involving the use of CYP enzymes as whole-cell biocatalysts for bioresource biotransformation, will be reviewed. Further, recently developed biotransformation pathways that result in gram-scale yields of fatty acids and fatty alkanes as well as aromatic amino acids, which depend on the hosts used for CYP expression, and the nature of the multistep reactions will be discussed. These pathways are similar regardless of whether the hosts are CYP-producing or non-CYP-producing; the limitations of these methods and the ways to overcome them are reviewed here.
Collapse
|
8
|
Porter JL, Sabatini S, Manning J, Tavanti M, Galman JL, Turner NJ, Flitsch SL. Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope. Enzyme Microb Technol 2018; 113:1-8. [PMID: 29602381 DOI: 10.1016/j.enzmictec.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Cytochrome P450 monooxygenases are able to catalyse a range of synthetically challenging reactions ranging from hydroxylation and demethylation to sulfoxidation and epoxidation. As such they have great potential for biocatalytic applications but are underutilised due to often-poor expression, stability and solubility in recombinant bacterial hosts. The use of self-sufficient P450 s with fused haem and reductase domains has already contributed heavily to improving catalytic efficiency and simplifying an otherwise more complex multi-component system of P450 and redox partners. Herein, we present a new addition to the class VII family with the cloning, sequencing and characterisation of the self-sufficient CYP116B62 Hal1 from Halomonas sp. NCIMB 172, the genome of which has not yet been sequenced. Hal1 exhibits high levels of expression in a recombinant E. coli host and can be utilised from cell lysate or used in purified form. Hal1 favours NADPH as electron donor and displays a diverse range of activities including hydroxylation, demethylation and sulfoxidation. These properties make Hal1 suitable for future biocatalytic applications or as a template for optimisation through engineering.
Collapse
Affiliation(s)
- Joanne L Porter
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Selina Sabatini
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Jack Manning
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Michele Tavanti
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - James L Galman
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Nicholas J Turner
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Sabine L Flitsch
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK.
| |
Collapse
|
9
|
Zhao W, Ding H, Lv C, Hu S, Huang J, Zheng X, Yao S, Mei L. Two-step biocatalytic reaction using recombinant Escherichia coli cells for efficient production of phenyllactic acid from l-phenylalanine. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Jia Z, Ma H, Huang Y, Huang Y, Ren P, Song S, Hu M, Tao Y. Production of (R)-3-quinuclidinol by a whole-cell biocatalyst with high efficiency. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1400019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhenhua Jia
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Hong Ma
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Yali Huang
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Yuanyuan Huang
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Pengju Ren
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Shuishan Song
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Meirong Hu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
11
|
Ke X, Ding GJ, Ma BX, Liu ZQ, Zhang JF, Zheng YG. Characterization of a novel CYP51 from Rhodococcus triatomae and its NADH-ferredoxin reductase-coupled application in lanosterol 14α-demethylation. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Ferroni FM, Tolmie C, Smit MS, Opperman DJ. Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase. PLoS One 2016; 11:e0160186. [PMID: 27472055 PMCID: PMC4966971 DOI: 10.1371/journal.pone.0160186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that convert ketones to esters. Due to their high regio-, stereo- and enantioselectivity and ability to catalyse these reactions under mild conditions, they have gained interest as alternatives to chemical Baeyer-Villiger catalysts. Despite their widespread occurrence within the fungal kingdom, most of the currently characterized BVMOs are from bacterial origin. Here we report the catalytic and structural characterization of BVMOAFL838 from Aspergillus flavus. BVMOAFL838 converts linear and aryl ketones with high regioselectivity. Steady-state kinetics revealed BVMOAFL838 to show significant substrate inhibition with phenylacetone, which was more pronounced at low pH, enzyme and buffer concentrations. Para substitutions on the phenyl group significantly improved substrate affinity and increased turnover frequencies. Steady-state kinetics revealed BVMOAFL838 to preferentially oxidize aliphatic ketones and aryl ketones when the phenyl group are separated by at least two carbons from the carbonyl group. The X-ray crystal structure, the first of a fungal BVMO, was determined at 1.9 Å and revealed the typical overall fold seen in type I bacterial BVMOs. The active site Arg and Asp are conserved, with the Arg found in the “in” position. Similar to phenylacetone monooxygenase (PAMO), a two residue insert relative to cyclohexanone monooxygenase (CHMO) forms a bulge within the active site. Approximately half of the “variable” loop is folded into a short α-helix and covers part of the active site entry channel in the non-NADPH bound structure. This study adds to the current efforts to rationalize the substrate scope of BVMOs through comparative catalytic and structural investigation of different BVMOs.
Collapse
Affiliation(s)
- Felix Martin Ferroni
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carmien Tolmie
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Martha Sophia Smit
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
13
|
Soussan L, Pen N, Belleville MP, Marcano JS, Paolucci-Jeanjean D. Alkane biohydroxylation: Interests, constraints and future developments. J Biotechnol 2016; 222:117-42. [DOI: 10.1016/j.jbiotec.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/17/2016] [Accepted: 02/02/2016] [Indexed: 01/07/2023]
|
14
|
Holtmann D, Fraaije MW, Arends IWCE, Opperman DJ, Hollmann F. The taming of oxygen: biocatalytic oxyfunctionalisations. Chem Commun (Camb) 2015; 50:13180-200. [PMID: 24902635 DOI: 10.1039/c3cc49747j] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and limitations of oxygenases as catalysts for preparative organic synthesis is discussed.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
15
|
Ye LJ, Toh HH, Yang Y, Adams JP, Snajdrova R, Li Z. Engineering of Amine Dehydrogenase for Asymmetric Reductive Amination of Ketone by Evolving Rhodococcus Phenylalanine Dehydrogenase. ACS Catal 2015. [DOI: 10.1021/cs501906r] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li Juan Ye
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Hui Hung Toh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yi Yang
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Joseph P. Adams
- Medicines Research Centre, GlaxoSmithKline R&D Ltd, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY U.K
| | - Radka Snajdrova
- Medicines Research Centre, GlaxoSmithKline R&D Ltd, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY U.K
| | - Zhi Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
16
|
Zhang A, Zhang T, Hall EA, Hutchinson S, Cryle MJ, Wong LL, Zhou W, Bell SG. The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 from Bacillus subtilis. MOLECULAR BIOSYSTEMS 2015; 11:869-81. [PMID: 25587700 DOI: 10.1039/c4mb00665h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crystal structure of the versatile CYP109B1 enzyme from Bacillus subtilis has been solved at 1.8 Å resolution. This is the first structure of an enzyme from this CYP family, whose members are prevalent across diverse species of bacteria. In the crystal structure the enzyme has an open conformation with an access channel leading from the heme to the surface. The substrate-free structure reveals the location of the key residues in the active site that are responsible for binding the substrate in the correct orientation for regioselective oxidation. Importantly, there are significant differences among these residues in members of the CYP109 and closely related CYP106 families and these likely account for the variations in substrate binding and oxidation profiles observed with these enzymes. A whole-cell oxidation biosystem was developed, which contains CYP109B1 and a phthalate family oxygenase reductase (PFOR), from Pseudomonas putida KT24440, as the electron transfer partner. This electron transfer system is able to support CYP109B1 activity resulting in the regioselective hydroxylation of both α- and β-ionone in vivo and in vitro. The PFOR is therefore a versatile electron transfer partner that is able to support the activity of CYP enzymes from other bacterium. The crystal structure of CYP109B1 has a positively charged proximal face and this explains why it can interact with PFOR and adrenodoxin which are predominantly negatively charged around their [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Aili Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Zheng D, Yang M, Zhuo J, Li K, Zhang H, Yang J, Cui B, Chen Y. Regio- and stereoselective benzylic hydroxylation to synthesize chiral tetrahydroquinolin-4-ol and tetrahydro-1H-benzo[b]azepin-5-ol with Pseudomonas plecoglossicidas. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Pennec A, Jacobs CL, Opperman DJ, Smit MS. Revisiting Cytochrome P450-Mediated Oxyfunctionalization of Linear and Cyclic Alkanes. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Gao P, Li A, Lee HH, Wang DIC, Li Z. Enhancing Enantioselectivity and Productivity of P450-Catalyzed Asymmetric Sulfoxidation with an Aqueous/Ionic Liquid Biphasic System. ACS Catal 2014. [DOI: 10.1021/cs5010344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Pengfei Gao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore 117585
- Singapore−MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
| | - Aitao Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore 117585
| | - Heng Hiang Lee
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore 117585
| | - Daniel I. C. Wang
- Singapore−MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhi Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore 117585
- Singapore−MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
| |
Collapse
|
21
|
Cheng XY, Tong YW, Loh KC. An immersed hollow fiber membrane bioreactor for enhanced biotransformation of indene to cis-indandiol using Pseudomonas putida. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
|
23
|
Bell SG, Spence JTJ, Liu S, George JH, Wong LL. Selective aliphatic carbon–hydrogen bond activation of protected alcohol substrates by cytochrome P450 enzymes. Org Biomol Chem 2014; 12:2479-88. [DOI: 10.1039/c3ob42417k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protected cyclohexanol and cyclohex-2-enol substrates were efficiently and selectively oxidised by different P450cam mutants providing a general methodology for generating substituted diols using biocatalysts.
Collapse
Affiliation(s)
- Stephen G. Bell
- School of Chemistry and Physics
- University of Adelaide
- , Australia
- Department of Chemistry
- University of Oxford
| | | | - Shenglan Liu
- School of Chemistry and Physics
- University of Adelaide
- , Australia
| | | | - Luet-Lok Wong
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford, UK
| |
Collapse
|
24
|
Zhang J, Xu T, Li Z. Enantioselective Biooxidation of Racemictrans-Cyclic Vicinal Diols: One-Pot Synthesis of Both Enantiopure (S,S)-Cyclic Vicinal Diols and (R)-α-Hydroxy Ketones. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Biocatalytic production of 5-hydroxy-2-adamantanone by P450cam coupled with NADH regeneration. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Wang Y, San KY, Bennett GN. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 2013; 24:994-9. [PMID: 23611567 DOI: 10.1016/j.copbio.2013.03.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
Abstract
Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms.
Collapse
Affiliation(s)
- Yipeng Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
27
|
Liu J, Li Z. Cascade Biotransformations via Enantioselective Reduction, Oxidation, and Hydrolysis: Preparation of (R)-δ-Lactones from 2-Alkylidenecyclopentanones. ACS Catal 2013. [DOI: 10.1021/cs400101v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ji Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive
4, Singapore 117576
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive
4, Singapore 117576
| |
Collapse
|