1
|
Arnold ND, Paper M, Fuchs T, Ahmad N, Jung P, Lakatos M, Rodewald K, Rieger B, Qoura F, Kandawa‐Schulz M, Mehlmer N, Brück TB. High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures. Microbiologyopen 2024; 13:e70000. [PMID: 39365014 PMCID: PMC11450739 DOI: 10.1002/mbo3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Michael Paper
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Tobias Fuchs
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nadim Ahmad
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Patrick Jung
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Michael Lakatos
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Katia Rodewald
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Bernhard Rieger
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Farah Qoura
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | | | - Norbert Mehlmer
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
2
|
Xin X, Xie J, Wang Y, Li L, Li W, Lv S, Wen Z, He J, Xin Y. Sludge source-redox mediators obtainment and availability for enhancing bioelectrogenesis and acidogenesis: Deciphering characteristics and mechanisms. WATER RESEARCH 2023; 236:119974. [PMID: 37084579 DOI: 10.1016/j.watres.2023.119974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Anaerobic biological treatment was regarded as one of promising options for realizing concurrent WAS reduction, stabilization and bioenergy/bioresource recycle. But the relatively low treatment efficiency limited its spreading application toward larger scale considerably in China. Aimed at such barrier, this study offered a novel enhancing strategy for achieving high-efficiency of bioenergy/bioresource recycle from WAS anaerobic treatment via improving bioelectrogenesis/acidogenesis using sludge source-redox mediators (SSRMs). SSRMs not only facilitated bioeletrogenesis with an increasing efficiency of 36% for voltage output and 39% for bioelectricity bioconversion, but also enhanced acidogenesis of WAS with a mean elevating efficiency of 37.5% of volatile fatty acids (VFAs) production within 5 d Mechanistic investigations indicated that SSRMs had a potential influence on improving the protein and carbohydrate metabolisms-related genes' expression for enhancing bioelectrogenesis and acidogenesis. Moreover, SSRMs exerted roles of electrochemical "catalysts" or as terminal electron acceptors with affecting functional proteins of complexes of Ⅰ and Ⅳ in electron transfer chains for improving electron transfer efficiency. Meanwhile, the core members' abundance, microbial diversity and community distributive evenness were prompted concurrently for carrying out superior bioelectrogenesis and acidogenesis. A schematic illustration was established for demonstrating the mechanism of SSRMs for enhancing bioelectrogenesis and acidogenesis via changing microbial metabolism functions, enhancing electron transfer efficiency, and regulating functional genes' expression of functional proteins (up-regulating cytochrome c oxidase and down-regulating-NADH dehydrogenase). This study provided an effective enhancing strategy for facilitating WAS bioconversion to bioenergy/bioresource with well-process sustainability.
Collapse
Affiliation(s)
- Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China; Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China.
| | - Jiaqian Xie
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Yanfang Wang
- North China municipal engineering design &research institute CO., LTD, Tianjin 300381, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ying Xin
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, PR China
| |
Collapse
|
3
|
Sheng L, Madika A, Lau MSH, Zhang Y, Minton NP. Metabolic engineering for the production of acetoin and 2,3-butanediol at elevated temperature in Parageobacillus thermoglucosidasius NCIMB 11955. Front Bioeng Biotechnol 2023; 11:1191079. [PMID: 37200846 PMCID: PMC10185769 DOI: 10.3389/fbioe.2023.1191079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
The current climate crisis has emphasised the need to achieve global net-zero by 2050, with countries being urged to set considerable emission reduction targets by 2030. Exploitation of a fermentative process that uses a thermophilic chassis can represent a way to manufacture chemicals and fuels through more environmentally friendly routes with a net reduction in greenhouse gas emissions. In this study, the industrially relevant thermophile Parageobacillus thermoglucosidasius NCIMB 11955 was engineered to produce 3-hydroxybutanone (acetoin) and 2,3-butanediol (2,3-BDO), organic compounds with commercial applications. Using heterologous acetolactate synthase (ALS) and acetolactate decarboxylase (ALD) enzymes, a functional 2,3-BDO biosynthetic pathway was constructed. The formation of by-products was minimized by the deletion of competing pathways surrounding the pyruvate node. Redox imbalance was addressed through autonomous overexpression of the butanediol dehydrogenase and by investigating appropriate aeration levels. Through this, we were able to produce 2,3-BDO as the predominant fermentation metabolite, with up to 6.6 g/L 2,3-BDO (0.33 g/g glucose) representing 66% of the theoretical maximum at 50°C. In addition, the identification and subsequent deletion of a previously unreported thermophilic acetoin degradation gene (acoB1) resulted in enhanced acetoin production under aerobic conditions, producing 7.6 g/L (0.38 g/g glucose) representing 78% of the theoretical maximum. Furthermore, through the generation of a ΔacoB1 mutant and by testing the effect of glucose concentration on 2,3-BDO production, we were able to produce 15.6 g/L of 2,3-BDO in media supplemented with 5% glucose, the highest titre of 2,3-BDO produced in Parageobacillus and Geobacillus species to date.
Collapse
Affiliation(s)
- Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Abubakar Madika
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew S. H. Lau
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Minton,
| |
Collapse
|
4
|
Somayaji A, Dhanjal CR, Lingamsetty R, Vinayagam R, Selvaraj R, Varadavenkatesan T, Govarthanan M. An insight into the mechanisms of homeostasis in extremophiles. Microbiol Res 2022; 263:127115. [PMID: 35868258 DOI: 10.1016/j.micres.2022.127115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
The homeostasis of extremophiles is one that is a diamond hidden in the rough. The way extremophiles adapt to their extreme environments gives a clue into the true extent of what is possible when it comes to life. The discovery of new extremophiles is ever-expanding and an explosion of knowledge surrounding their successful existence in extreme environments is obviously perceived in scientific literature. The present review paper aims to provide a comprehensive view on the different mechanisms governing the extreme adaptations of extremophiles, along with insights and discussions on what the limits of life can possibly be. The membrane adaptations that are vital for survival are discussed in detail. It was found that there are many alterations in the genetic makeup of such extremophiles when compared to their mesophilic counterparts. Apart from the several proteins involved, the significance of chaperones, efflux systems, DNA repair proteins and a host of other enzymes that adapt to maintain functionality, are enlisted, and explained. A deeper understanding of the underlying mechanisms could have a plethora of applications in the industry. There are cases when certain microbes can withstand extreme doses of antibiotics. Such microbes accumulate numerous genetic elements (or plasmids) that possess genes for multiple drug resistance (MDR). A deeper understanding of such mechanisms helps in the development of potential approaches and therapeutic schemes for treating pathogen-mediated outbreaks. An in-depth analysis of the parameters - radiation, pressure, temperature, pH value and metal resistance - are discussed in this review, and the key to survival in these precarious niches is described.
Collapse
Affiliation(s)
- Adithi Somayaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chetan Roger Dhanjal
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rathnamegha Lingamsetty
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| |
Collapse
|
5
|
Liang J, Roberts A, van Kranenburg R, Bolhuis A, Leak DJ. Relaxed control of sugar utilization in Parageobacillus thermoglucosidasius DSM 2542. Microbiol Res 2021; 256:126957. [PMID: 35032723 DOI: 10.1016/j.micres.2021.126957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023]
Abstract
Though carbon catabolite repression (CCR) has been intensively studied in some more characterised organisms, there is a lack of information of CCR in thermophiles. In this work, CCR in the thermophile, Parageobacillus thermoglucosidasius DSM 2542 has been studied during growth on pentose sugars in the presence of glucose. Physiological studies under fermentative conditions revealed a loosely controlled CCR when DSM 2542 was grown in minimal medium supplemented with a mixture of glucose and xylose. This atypical CCR pattern was also confirmed by studying xylose isomerase expression level by qRT-PCR. Fortuitously, the pheB gene, which encodes catechol 2, 3-dioxygenase was found to have a cre site highly similar to the consensus catabolite-responsive element (cre) at its 3' end and was used to confirm that expression of pheB from a plasmid was under stringent CCR control. Bioinformatic analysis suggested that the CCR regulation of xylose metabolism in P. thermoglucosidasius DSM 2542 might occur primarily via control of expression of pentose transporter operons. Relaxed control of sugar utilization might reflect a lower affinity of the CcpA-HPr (Ser46-P) or CcpA-Crh (Ser46-P) complexes to the cre(s) in these operons.
Collapse
Affiliation(s)
- Jinghui Liang
- Department of Biology and Biochemistry, University of Bath, UK.
| | - Adam Roberts
- Department of Biology and Biochemistry, University of Bath, UK
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, The Netherlands; Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, The Netherlands
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, UK
| | - David J Leak
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
6
|
Carbon Monoxide Induced Metabolic Shift in the Carboxydotrophic Parageobacillus thermoglucosidasius DSM 6285. Microorganisms 2021; 9:microorganisms9051090. [PMID: 34069472 PMCID: PMC8159138 DOI: 10.3390/microorganisms9051090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Parageobacillus thermoglucosidasius is known to catalyse the biological water gas shift (WGS) reaction, a pathway that serves as a source of alternative energy and carbon to a wide variety of bacteria. Despite increasing interest in this bacterium due to its ability to produce biological hydrogen through carbon monoxide (CO) oxidation, there are no data on the effect of toxic CO gas on its physiology. Due to its general requirement of O2, the organism is often grown aerobically to generate biomass. Here, we show that carbon monoxide (CO) induces metabolic changes linked to distortion of redox balance, evidenced by increased accumulation of organic acids such as acetate and lactate. This suggests that P. thermoglucosidasius survives by expressing several alternative pathways, including conversion of pyruvate to lactate, which balances reducing equivalents (oxidation of NADH to NAD+), and acetyl-CoA to acetate, which directly generates energy, while CO is binding terminal oxidases. The data also revealed clearly that P. thermoglucosidasius gained energy and grew during the WGS reaction. Combined, the data provide critical information essential for further development of the biotechnological potential of P. thermoglucosidasius.
Collapse
|
7
|
Mol V, Bennett M, Sánchez BJ, Lisowska BK, Herrgård MJ, Nielsen AT, Leak DJ, Sonnenschein N. Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metab Eng 2021; 65:123-134. [PMID: 33753231 DOI: 10.1016/j.ymben.2021.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism. Finally, p-thermo was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by identifying the minimal required supplemented nutrients (thiamin, biotin and iron(III)) needed to sustain anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental hypotheses and for facilitating data-driven metabolic engineering, expanding the use of P. thermoglucosidasius as a high yield production platform.
Collapse
Affiliation(s)
- Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martyn Bennett
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benjamín J Sánchez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beata K Lisowska
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; BioInnovation Institute, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - David J Leak
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Singleton C, Gilman J, Rollit J, Zhang K, Parker DA, Love J. A design of experiments approach for the rapid formulation of a chemically defined medium for metabolic profiling of industrially important microbes. PLoS One 2019; 14:e0218208. [PMID: 31188885 PMCID: PMC6561596 DOI: 10.1371/journal.pone.0218208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
Geobacillus thermoglucosidans DSM2542 is an industrially important microbe, however the complex nutritional requirements of Geobacilli confound metabolic engineering efforts. Previous studies have utilised semi-defined media recipes that contain complex, undefined, biologically derived nutrients which have unknown ingredients that cannot be quantified during metabolic profiling. This study used design of experiments to investigate how individual nutrients and interactions between these nutrients contribute to growth. A mathematically derived defined medium has been formulated that has been shown to robustly support growth of G. thermoglucosidans in two different environmental conditions (96-well plate and shake flask) and with a variety of lignocellulose-based carbohydrates. This enabled the catabolism of industrially relevant carbohydrates to be investigated.
Collapse
Affiliation(s)
- Chloe Singleton
- The Exeter Microbial Biofuels Group, College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, United Kingdom
| | - James Gilman
- The Exeter Microbial Biofuels Group, College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, United Kingdom
| | - Jessica Rollit
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kun Zhang
- Shell Technology Centre, Houston, Texas, United States of America
| | - David A. Parker
- The Exeter Microbial Biofuels Group, College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, United Kingdom
- Shell Technology Centre, Houston, Texas, United States of America
| | - John Love
- The Exeter Microbial Biofuels Group, College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Sun QL, Sun YY, Zhang J, Luan ZD, Lian C, Liu SQ, Yu C. High temperature-induced proteomic and metabolomic profiles of a thermophilic Bacillus manusensis isolated from the deep-sea hydrothermal field of Manus Basin. J Proteomics 2019; 203:103380. [PMID: 31102757 DOI: 10.1016/j.jprot.2019.103380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
Abstract
Thermophiles are organisms that grow optimally at 50 °C-80 °C and studies on the survival mechanisms of thermophiles have drawn great attention. Bacillus manusensis S50-6 is the type strain of a new thermophilic species isolated from hydrothermal vent in Manus Basin. In this study, we examined the growth and global responses of S50-6 to high temperature on molecular level using multi-omics method (genomics, proteomics, and metabolomics). S50-6 grew optimally at 50 °C (Favorable, F) and poorly at 65 °C (Non-Favorable, NF); it formed spores at F but not at NF condition. At NF condition, S50-6 formed long filaments containing undivided cells. A total of 1621 proteins were identified at F and NF conditions, and 613 proteins were differentially expressed between F and NF. At NF condition, proteins of glycolysis, rRNA mature and modification, and DNA/protein repair were up-regulated, whereas proteins of sporulation and amino acid/nucleotide metabolism were down-regulated. Consistently, many metabolites associated with amino acid and nucleotide metabolic processes were down-regulated at NF condition. Our results revealed molecular strategies of deep-sea B. manusensis to survive at unfavorable high temperature and provided new insights into the thermotolerant mechanisms of thermophiles. SIGNIFICANCE: In this study, we systematically characterized the genomic, proteomic and metabolomic profiles of a thermophilic deep-sea Bacillus manusensis under different temperatures. Based on these analysis, we propose a model delineating the global responses of B. manusensis to unfavorable high temperature. Under unfavorable high temperature, glycolysis is a more important energy supply pathway; protein synthesis is subjected to more stringent regulation by increased tRNA modification; protein and DNA repair associated proteins are enhanced in production to promote heat survival. In contrast, energy-costing pathways, such as sporulation, are repressed, and basic metabolic pathways, such as amino acid and nucleotide metabolisms, are slowed down. Our results provide new insights into the thermotolerant mechanisms of thermophilic Bacillus.
Collapse
Affiliation(s)
- Qing-Lei Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhen-Dong Luan
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Lian
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shi-Qi Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhu XM, Zhang XX, Cheng RT, Yu HL, Yuan RS, Bu XL, Xu J, Ao P, Chen YC, Xu MJ. Dynamical modelling of secondary metabolism and metabolic switches in Streptomyces xiamenensis 318. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190418. [PMID: 31183155 PMCID: PMC6502367 DOI: 10.1098/rsos.190418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The production of secondary metabolites, while important for bioengineering purposes, presents a paradox in itself. Though widely existing in plants and bacteria, they have no definite physiological roles. Yet in both native habitats and laboratories, their production appears robust and follows apparent metabolic switches. We show in this work that the enzyme-catalysed process may improve the metabolic stability of the cells. The latter can be responsible for the overall metabolic behaviours such as dynamic metabolic landscape, metabolic switches and robustness, which can in turn affect the genetic formation of the organism in question. Mangrove-derived Streptomyces xiamenensis 318, with a relatively compact genome for secondary metabolism, is used as a model organism in our investigation. Integrated studies via kinetic metabolic modelling, transcriptase measurements and metabolic profiling were performed on this strain. Our results demonstrate that the secondary metabolites increase the metabolic fitness of the organism via stabilizing the underlying metabolic network. And the fluxes directing to NADH, NADPH, acetyl-CoA and glutamate provide the key switches for the overall and secondary metabolism. The information may be helpful for improving the xiamenmycin production on the strain.
Collapse
Affiliation(s)
- Xiao-Mei Zhu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xing-Xing Zhang
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Run-Tan Cheng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - He-Lin Yu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ruo-Shi Yuan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xu-Liang Bu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- School of Oceanography, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Xu
- School of Oceanography, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Ao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
11
|
Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda) 2015; 30:97-106. [PMID: 25729055 DOI: 10.1152/physiol.00066.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are referred to as microorganisms with optimal growth temperatures of >60 °C. Over the past few years, a number of studies have been conducted regarding thermophiles, especially using the omics strategies. This review provides a systematic view of the survival physiology of thermophiles from an "omics" perspective, which suggests that the adaptive ability of thermophiles is based on a cooperative mode with multi-dimensional regulations integrating genomics, transcriptomics, and proteomics.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and BGI-Shenzhen, Shenzhen, China
| | - Zhen Cen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| | - Jingjing Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|
12
|
Cordova LT, Long CP, Venkataramanan KP, Antoniewicz MR. Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium. Metab Eng 2015; 32:74-81. [PMID: 26391740 DOI: 10.1016/j.ymben.2015.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/26/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72 °C, Geobacillus LC300 has a growth rate of 2.15 h(-1) on glucose and 1.52 h(-1) on xylose (doubling time less than 30 min). The corresponding specific glucose and xylose utilization rates are 5.55 g/g/h and 5.24 g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of Geobacillus LC300 its genome was sequenced using PacBio's RS II single-molecule real-time (SMRT) sequencing platform and annotated using the RAST server. Based on the genome annotation and the measured biomass composition a core metabolic network model was constructed. To further demonstrate the biotechnological potential of this organism, Geobacillus LC300 was grown to high cell-densities in a fed-batch culture, where cells maintained a high xylose utilization rate under low dissolved oxygen concentrations. All of these characteristics make Geobacillus LC300 an attractive host for future metabolic engineering and biotechnology applications.
Collapse
Affiliation(s)
- Lauren T Cordova
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, 150 Academy St, Newark, DE 19716, USA
| | - Christopher P Long
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, 150 Academy St, Newark, DE 19716, USA
| | - Keerthi P Venkataramanan
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, 150 Academy St, Newark, DE 19716, USA
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, 150 Academy St, Newark, DE 19716, USA.
| |
Collapse
|