1
|
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, Yong YC. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol 2024; 108:33. [PMID: 38175234 DOI: 10.1007/s00253-023-12821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - YaFei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Wu Z, Li J, Chen W. Biological characterization of lipoic acid- and heme-dependent Escherichia coli small colony variants isolated from sheep in Xinjiang, China. Vet Res Commun 2024; 48:3859-3872. [PMID: 39325108 DOI: 10.1007/s11259-024-10554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Escherichia coli (E. coli) small colony variants (SCVs) have garnered attention due to their heightened antibiotic resistance and enhanced cell retention, posing significant risks to public health and food safety. However, understanding of SCVs derived from sheep remains limited. This study aimed to detect the biological characterization of sheep-derived E. coli SCVs and investigate the factors contributing to SCV development with preliminary genomic data. In this study, a lipoic acid-dependent SCV (LA-SCV) and a wild-type (WT) strain were isolated from sheep bile. Then, a heme-dependent SCV (HD-SCV) was induced from WT using amikacin. Initially, we examined factors contributing to SCV formation via comparative genomics. Subsequent comparisons between WT and two SCV strains encompassed antibiotic resistance, hemolytic activity, biofilm formation, motility, and metabolism. Genomic analyses identified a frameshift deletion mutation in the lipA gene in LA-SCV and a stopgain mutation in the hemG gene in HD-SCV, hypothesized as potential triggers for lipoic acid- and heme-dependent SCV development, respectively. Physiological, biochemical, and cultural traits exhibited notable differences between WT and SCVs, including increased antibiotic resistance, hemolytic activity, and biofilm formation, but alongside non-fermentative acetate utilization, slow growth, reduced intracellular ATP, and decreased motility (P < 0.01). The energy and amino acid metabolism were suppressed during the logarithmic phase in LA-SCV, while both logarithmic and stable phases in HD-SCV. These alterations in biological characteristics present significant challenges in managing E. coli pathogenicity and antibiotic resistance.
Collapse
Affiliation(s)
- Zihao Wu
- College of Life Sciences and Technology, State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps, Tarim University, The Ministry of Science & Technology, Alar, 86-843300, China
| | - Jing Li
- College of Animal Sciences and Technology, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Tarim University, Xinjiang Production & Construction Corps, Alar, 86-843300, China.
| | - Wei Chen
- College of Life Sciences and Technology, State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps, Tarim University, The Ministry of Science & Technology, Alar, 86-843300, China.
- College of Animal Sciences and Technology, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Tarim University, Xinjiang Production & Construction Corps, Alar, 86-843300, China.
| |
Collapse
|
3
|
Hu JC, Han M, Yan RY, Hua MM, Li J, Shen H, Cao XL. Mobile genetic elements contributing to horizontal gene transfer of blaNDM among Escherichia coli in the community setting. Microb Pathog 2024; 196:106996. [PMID: 39368562 DOI: 10.1016/j.micpath.2024.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE To investigate the distribution of carbapenem-resistant Enterobacterales (CRE) in the community and to describe the genomic characteristics. METHODS CRE screened from fecal samples in healthy people at the health examination center of a tertiary hospital in China underwent Whole genome sequencing (WGS) to analyze genotypic characteristics of CRE. The flanking DNA sequence of blaNDM-5 and mcr1.1 genes were analyzed by Gcluster software. RESULTS A total of 7187 fecal samples were screened, and CRE carriage was detected in 0.4 % of the sampled population. In total, 30 Escherichia coli, one Citrobacter freundii and one Klebsiella aerogene were screened. The 30 carbapenem-resistant Escherichia coli (CREC) isolates displayed slight resistance to amikacin (13.3 %) and aztreonam (20.0 %). All the CRE isolates contained blaNDM, and blaNDM-5 (84.4 %) was the most common one. B1 (n = 11) and A (n = 7) were predominant phylogroups. Furthermore, 34 distinct plasmid replicons, 67 different VFs, 22 distinct STs, 17 different FimH types, 26 O:H serotypes as well as 74 MGEs including 61 insertion sequences and 13 transposons were identified. The flanking DNA sequence analysis of blaNDM-5 and mcr1.1 genes indicates the key role of horizontal transfer of blaNDM-5 in the CRE development evidenced by diverse STs and phylogenetic tree. CONCLUSION E. coli was the most predominant CRE isolates in community setting, and blaNDM (blaNDM-5) was the main CHβL encoding genes. The high prevalence of ARGs was associated with high resistance to commonly used antimicrobials. Besides, the genetic diversity of these isolates suggested the key role of blaNDM horizontal transfer in the CRE development. Thus, active screening of blaNDM in communities is particularly important for the prevention and control of CRE.
Collapse
Affiliation(s)
- Jin-Cao Hu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China; Nanjing Field Epidemiology Training Program, Nanjing Municipal Center for Disease Control and Prevention, China
| | - Ru-Yu Yan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, China
| | - Miao-Miao Hua
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Xiao-Li Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| |
Collapse
|
4
|
Zhou XL, Zhang MS, Zheng XR, Zhang ZQ, Liu JZ. Increasing the robustness of Escherichia coli for aromatic chemicals production through transcription factor engineering. ADVANCED BIOTECHNOLOGY 2024; 2:15. [PMID: 39883341 PMCID: PMC11740835 DOI: 10.1007/s44307-024-00023-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 01/31/2025]
Abstract
Engineering microbial cell factories has been widely used to produce a variety of chemicals, including natural products, biofuels, and bulk chemicals. However, poor robustness limits microbial production on an industrial scale. Microbial robustness is essential to ensure reliable and sustainable production of targeted chemicals. In this study, we developed an approach to screen transcription factors to improve robustness using CRSPRa technology. We applied this approach to identify some transcription factors to increase the robustness of Escherichia coli to aromatic chemicals. Activation of hdfR, yldP, purR, sosS, ygeH, cueR, cra, and treR increased the robustness of E. coli to phenyllactic acid. Upregulation of some transcription factors also improved the robustness to caffeic acid (cra) or tyrosol (cra, cueR, treR, soxS, hdfR and purR). Our study demonstrated that transcription factor engineering using CRISPRa is a powerful method to increase microbial robustness. This research provides new approaches to efficiently find genes responsible for increasing microbial robustness.
Collapse
Affiliation(s)
- Xiao-Ling Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Meng-Sang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xing-Run Zheng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhi-Qian Zhang
- Joint Research Center of Engineering Biologylogy Technology of Sun Yat-Sen University and Tidetron Bioworks, Guangzhou, 510275, China
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd. Guangzhou, Guangzhou, 510399, China
| | - Jian-Zhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Joint Research Center of Engineering Biologylogy Technology of Sun Yat-Sen University and Tidetron Bioworks, Guangzhou, 510275, China.
| |
Collapse
|
5
|
Xu P, Lin NQ, Zhang ZQ, Liu JZ. Strategies to increase the robustness of microbial cell factories. ADVANCED BIOTECHNOLOGY 2024; 2:9. [PMID: 39883204 PMCID: PMC11740849 DOI: 10.1007/s44307-024-00018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 01/31/2025]
Abstract
Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer. Therefore, strain robustness is essential to ensure reliable and sustainable production efficiency. In this review, the current strategies to improve host robustness were summarized, including knowledge-based engineering approaches, such as transcription factors, membrane/transporters and stress proteins, and the traditional adaptive laboratory evolution based on natural selection. Computation-assisted (e.g. GEMs, deep learning and machine learning) design of robust industrial hosts was also introduced. Furthermore, the challenges and future perspectives on engineering microbial host robustness are proposed to promote the development of green, efficient and sustainable biomanufacturers.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Nuo-Qiao Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhi-Qian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou, 510399, China
| | - Jian-Zhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Joint Research Center of Engineering Biology Technology of Sun Yat-Sen University and Tidetron Bioworks, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Jang YS, Yang J, Kim JK, Kim TI, Park YC, Kim IJ, Kim KH. Adaptive laboratory evolution and transcriptomics-guided engineering of Escherichia coli for increased isobutanol tolerance. Biotechnol J 2024; 19:e2300270. [PMID: 37799109 DOI: 10.1002/biot.202300270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
As a renewable energy from biomass, isobutanol is considered as a promising alternative to fossil fuels. To biotechnologically produce isobutanol, strain development using industrial microbial hosts, such as Escherichia coli, has been conducted by introducing a heterologous isobutanol synthetic pathway. However, the toxicity of produced isobutanol inhibits cell growth, thereby restricting improvements in isobutanol titer, yield, and productivity. Therefore, the development of robust microbial strains tolerant to isobutanol is required. In this study, isobutanol-tolerant mutants were isolated from two E. coli parental strains, E. coli BL21(DE3) and MG1655(DE3), through adaptive laboratory evolution (ALE) under high isobutanol concentrations. Subsequently, 16 putative genes responsible for isobutanol tolerance were identified by transcriptomic analysis. When overexpressed in E. coli, four genes (fadB, dppC, acs, and csiD) conferred isobutanol tolerance. A fermentation study with a reverse engineered isobutanol-producing E. coli JK209 strain showed that fadB or dppC overexpression improved isobutanol titers by 1.5 times, compared to the control strain. Through coupling adaptive evolution with transcriptomic analysis, new genetic targets utilizable were identified as the basis for the development of an isobutanol-tolerant strain. Thus, these new findings will be helpful not only for a fundamental understanding of microbial isobutanol tolerance but also for facilitating industrially feasible isobutanol production.
Collapse
Affiliation(s)
- Young Seo Jang
- Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Jungwoo Yang
- Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Jae Kyun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Tae In Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - In Jung Kim
- Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Gao S, Liao Y, He H, Yang H, Yang X, Xu S, Wang X, Chen K, Ouyang P. Advance of tolerance engineering on microbes for industrial production. Synth Syst Biotechnol 2023; 8:697-707. [PMID: 38025766 PMCID: PMC10656194 DOI: 10.1016/j.synbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Industrial microbes have become the core of biological manufacturing, which utilized as the cell factory for production of plenty of chemicals, fuels and medicine. However, the challenge that the extreme stress conditions exist in production is unavoidable for cell factory. Consequently, to enhance robustness of the chassis cell lays the foundation for development of bio-manufacturing. Currently, the researches on cell tolerance covered various aspects, involving reshaping regulatory network, cell membrane modification and other stress response. In fact, the strategies employed to improve cell robustness could be summarized into two directions, irrational engineering and rational engineering. In this review, the metabolic engineering technologies on enhancement of microbe tolerance to industrial conditions are summarized. Meanwhile, the novel thoughts emerged with the development of biological instruments and synthetic biology are discussed.
Collapse
Affiliation(s)
- Siyuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yang Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Hao He
- Petrochemical Research Institute of PetroChina Co. Ltd., Beijing, 102206, China
| | - Huiling Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xuewei Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
8
|
Yuan D, Liu B, Yuan X, Feng L, Xu X, Zhu J, Chen Z, Xu R, Chen J, Xu G, Lin J, Yang L, Li M, Lian J, Wu M. Multisite Mutation of the Escherichia coli cAMP Receptor Protein: Enhancing Xylitol Biosynthesis by Activating Xylose Catabolism and Improving Strain Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37921650 DOI: 10.1021/acs.jafc.3c05445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The bioproduction of xylitol from hemicellulose hydrolysate has good potential for industrial development. However, xylitol productivity has always been limited due to corncob hydrolysate toxicity and glucose catabolic repression. To address these challenges, this work selected the S83 and S128 amino acid residues of the cyclic AMP receptor protein (CRP) as the modification target. By introducing multisite mutation in CRP, this approach successfully enhanced xylose catabolism and improved the strain's tolerance to corncob hydrolysate. The resulting mutant strain, designated as CPH (CRP S83H-S128P), underwent fermentation in a 20 L bioreactor with semicontinuous feeding of corncob hydrolysate. Remarkably, xylitol yield and xylitol productivity for 41 h fermentation were 175 and 4.32 g/L/h, respectively. Therefore, multisite CRP mutation was demonstrated as an efficient global regulatory strategy to effectively improve xylitol productivity from lime-pretreated corncob hydrolysates.
Collapse
Affiliation(s)
- Dongxu Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Bingbing Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Xinsong Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
| | - Leilei Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Xudong Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Jialin Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Zhengjie Chen
- Shandong Weiyan Biotechnology Co., Ltd, Binzhou 256660, PR China
| | - Renhao Xu
- Hangzhou No. 14 Middle School, Hangzhou 310006, PR China
| | - Jiao Chen
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, PR China
- Haizheng Pharmaceutical Co., Ltd, Taizhou 318000, PR China
| | - Gang Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd, Quzhou 324302, PR China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, PR China
| |
Collapse
|
9
|
Zhang X, Cao Y, Liu Y, Lei Y, Zhai R, Chen W, Shi G, Jin JM, Liang C, Tang SY. Designing glucose utilization "highway" for recombinant biosynthesis. Metab Eng 2023; 78:235-247. [PMID: 37394056 DOI: 10.1016/j.ymben.2023.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
cAMP receptor protein (CRP) is known as a global regulatory factor mainly mediating carbon source catabolism. Herein, we successfully engineered CRP to develop microbial chassis cells with improved recombinant biosynthetic capability in minimal medium with glucose as single carbon source. The obtained best-performing cAMP-independent CRPmu9 mutant conferred both faster cell growth and a 133-fold improvement in expression level of lac promoter in presence of 2% glucose, compared with strain under regulation of CRPwild-type. Promoters free from "glucose repression" are advantageous for recombinant expression, as glucose is a frequently used inexpensive carbon source in high-cell-density fermentations. Transcriptome analysis demonstrated that the CRP mutant globally rewired cell metabolism, displaying elevated tricarboxylic acid cycle activity; reduced acetate formation; increased nucleotide biosynthesis; and improved ATP synthesis, tolerance, and stress-resistance activity. Metabolites analysis confirmed the enhancement of glucose utilization with the upregulation of glycolysis and glyoxylate-tricarboxylic acid cycle. As expected, an elevated biosynthetic capability was demonstrated with vanillin, naringenin and caffeic acid biosynthesis in strains regulated by CRPmu9. This study has expanded the significance of CRP optimization into glucose utilization and recombinant biosynthesis, beyond the conventionally designated carbon source utilization other than glucose. The Escherichiacoli cell regulated by CRPmu9 can be potentially used as a beneficial chassis for recombinant biosynthesis.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufeng Cao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China
| | - Yanyan Lei
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruixue Zhai
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guizhi Shi
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Chen M, Liang H, Han C, Zhou P, Xing Z, Chen Q, Liu Y, Xie GA, Xie R. Engineering of global transcription factor FruR to redirect the carbon flow in Escherichia coli for enhancing L-phenylalanine biosynthesis. Microb Cell Fact 2022; 21:222. [PMID: 36289548 PMCID: PMC9609185 DOI: 10.1186/s12934-022-01954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The catabolite repressor/activator protein (FruR) is a global regulatory protein known to control the expression of several genes concerned with carbon utilization and energy metabolism. This study aimed to illustrate effects of the FruR mutant on the L-phenylalanine (L-PHE) producing strain PHE01. RESULTS Random mutagenesis libraries of fruR generated in vitro were first integrated into the chromosome of PHE01 by CRISPR/Cas9 technique, and then the best mutant PHE07 (FruRE173K) was obtained. With this mutant, a final L-PHE concentration of 70.50 ± 1.02 g/L was achieved, which was 23.34% higher than that of PHE01. To better understand the mechanism, both transcriptomes and metabolomes of PHE07 were carried out and compared to that of PHE01. Specifically, the transcript levels of genes involved in gluconeogenesis pathway, pentose phosphate pathway, Krebs cycle, and glyoxylate shunt were up-regulated in the FruRE173K mutant, whereas genes aceEF, acnB, and icd were down-regulated. From the metabolite level, the FruRE173K mutation led to an accumulation of pentose phosphate pathway and Krebs cycle products, whereas the products of pyruvate metabolism pathway: acetyl-CoA and cis-aconic acid, were down-regulated. As a result of the altered metabolic flows, the utilization of carbon sources was improved and the supply of precursors (phosphoenolpyruvate and erythrose 4-phosphate) for L-PHE biosynthesis was increased, which together led to the enhanced production of L-PHE. CONCLUSION A novel strategy for L-PHE overproduction by modification of the global transcription factor FruR in E. coli was reported. Especially, these findings expand the scope of pathways affected by the fruR regulon and illustrate its importance as a global regulator in L-PHE production.
Collapse
Affiliation(s)
- Minliang Chen
- Henan Joincare Biopharma Research Institute Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China ,Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-Synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan, 511500 People’s Republic of China
| | - Hengyu Liang
- Henan Joincare Biopharma Research Institute Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China ,Jiaozuo Joincare Biotechnology Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China ,Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-Synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan, 511500 People’s Republic of China
| | - Chao Han
- Henan Joincare Biopharma Research Institute Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China ,Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-Synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan, 511500 People’s Republic of China
| | - Peng Zhou
- Henan Joincare Biopharma Research Institute Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China ,Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-Synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan, 511500 People’s Republic of China
| | - Zhiwei Xing
- Henan Joincare Biopharma Research Institute Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China ,Jiaozuo Joincare Biotechnology Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China
| | - Qianqian Chen
- Guangdong Provincial Key Laboratory of Research and Development and Application of Fermentation and Semi-Synthetic Drugs, Livzon New North River Pharmaceutical Co. Ltd, 1st Renmin Road, Qingyuan, 511500 People’s Republic of China
| | - Yongyu Liu
- Henan Joincare Biopharma Research Institute Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China
| | - Gou-an Xie
- Henan Joincare Biopharma Research Institute Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China
| | - Rufei Xie
- Henan Joincare Biopharma Research Institute Co. Ltd, Jinyuan Street 8, Jiaozuo, 454000 People’s Republic of China
| |
Collapse
|
11
|
Liu X, Zhao G, Sun S, Fan C, Feng X, Xiong P. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 2022; 10:843887. [PMID: 35350186 PMCID: PMC8957974 DOI: 10.3389/fbioe.2022.843887] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Succinic acid, a dicarboxylic acid produced as an intermediate of the tricarboxylic acid (TCA) cycle, is one of the most important platform chemicals for the production of various high value-added derivatives. As traditional chemical synthesis processes suffer from nonrenewable resources and environment pollution, succinic acid biosynthesis has drawn increasing attention as a viable, more environmentally friendly alternative. To date, several metabolic engineering approaches have been utilized for constructing and optimizing succinic acid cell factories. In this review, different succinic acid biosynthesis pathways are summarized, with a focus on the key enzymes and metabolic engineering approaches, which mainly include redirecting carbon flux, balancing NADH/NAD+ ratios, and optimizing CO2 supplementation. Finally, future perspectives on the microbial production of succinic acid are discussed.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guang Zhao
- State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
12
|
Refactoring transcription factors for metabolic engineering. Biotechnol Adv 2022; 57:107935. [PMID: 35271945 DOI: 10.1016/j.biotechadv.2022.107935] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Due to the ability to regulate target metabolic pathways globally and dynamically, metabolic regulation systems composed of transcription factors have been widely used in metabolic engineering and synthetic biology. This review introduced the categories, action principles, prediction strategies, and related databases of transcription factors. Then, the application of global transcription machinery engineering technology and the transcription factor-based biosensors and quorum sensing systems are overviewed. In addition, strategies for optimizing the transcriptional regulatory tools' performance by refactoring transcription factors are summarized. Finally, the current limitations and prospects of constructing various regulatory tools based on transcription factors are discussed. This review will provide theoretical guidance for the rational design and construction of transcription factor-based metabolic regulation systems.
Collapse
|
13
|
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol 2021; 19:701-715. [PMID: 34172951 DOI: 10.1038/s41579-021-00577-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.
Collapse
Affiliation(s)
- Jay Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Biosustainability, Danish Technical University, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,DOE Agile BioFoundry, Emeryville, CA, USA.,BCAM,Basque Center for Applied Mathematics, Bilbao, Spain.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| |
Collapse
|
14
|
Metabolic engineering of Escherichia coli for the production of isobutanol: a review. World J Microbiol Biotechnol 2021; 37:168. [PMID: 34487256 DOI: 10.1007/s11274-021-03140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
With the ongoing depletion of fossil fuel resources and emerging environmental issues, increasing research effort is being dedicated to producing biofuels from renewable substrates. With its advantages over ethanol in terms of energy density, octane number, and hygroscopicity, isobutanol is considered a potential alternative to traditional gasoline. However, as wild-type microorganisms cannot achieve the production of isobutanol with high titers and yields, rational genetic engineering has been employed to enhance its production. Herein, we review the latest developments in the metabolic engineering of Escherichia coli for the production of isobutanol, including those related to the utilization of diverse carbon sources, balancing the redox state, improving isobutanol tolerance, and application of synthetic biology circuits and tools.
Collapse
|
15
|
Wang Y, Li Q, Tian P, Tan T. Charting the landscape of RNA polymerases to unleash their potential in strain improvement. Biotechnol Adv 2021; 54:107792. [PMID: 34216775 DOI: 10.1016/j.biotechadv.2021.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
One major mission of microbial cell factory is overproduction of desired chemicals. To this end, it is necessary to orchestrate enzymes that affect metabolic fluxes. However, only modification of a small number of enzymes in most cases cannot maximize desired metabolites, and global regulation is required. Of myriad enzymes influencing global regulation, RNA polymerase (RNAP) may be the most versatile enzyme in biological realm because it not only serves as the workhorse of central dogma but also participates in a plethora of biochemical events. In fact, recent years have witnessed extensive exploitation of RNAPs for phenotypic engineering. While a few impressive reviews showcase the structures and functionalities of RNAPs, this review not only summarizes the state-of-the-art advance in the structures of RNAPs but also points out their enormous potentials in metabolic engineering and synthetic biology. This review aims to provide valuable insights for strain improvement.
Collapse
Affiliation(s)
- Ye Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
16
|
Schalck T, den Bergh BV, Michiels J. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms 2021; 9:249. [PMID: 33530454 PMCID: PMC7912173 DOI: 10.3390/microorganisms9020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.
Collapse
Affiliation(s)
- Thomas Schalck
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
17
|
Liu R, Liang L, Freed EF, Choudhury A, Eckert CA, Gill RT. Engineering regulatory networks for complex phenotypes in E. coli. Nat Commun 2020; 11:4050. [PMID: 32792485 PMCID: PMC7426931 DOI: 10.1038/s41467-020-17721-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory networks describe the hierarchical relationship between transcription factors, associated proteins, and their target genes. Regulatory networks respond to environmental and genetic perturbations by reprogramming cellular metabolism. Here we design, construct, and map a comprehensive regulatory network library containing 110,120 specific mutations in 82 regulators expected to perturb metabolism. We screen the library for different targeted phenotypes, and identify mutants that confer strong resistance to various inhibitors, and/or enhanced production of target compounds. These improvements are identified in a single round of selection, showing that the regulatory network library is universally applicable and is convenient and effective for engineering targeted phenotypes. The facile construction and mapping of the regulatory network library provides a path for developing a more detailed understanding of global regulation in E. coli, with potential for adaptation and use in less-understood organisms, expanding toolkits for future strain engineering, synthetic biology, and broader efforts.
Collapse
Affiliation(s)
- Rongming Liu
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Liya Liang
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Emily F Freed
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Alaksh Choudhury
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Carrie A Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
- National Renewable Energy Laboratory (NREL), Golden, Colorado, USA
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
18
|
Xu G, Wu A, Xiao L, Han R, Ni Y. Enhancing butanol tolerance of Escherichia coli reveals hydrophobic interaction of multi-tasking chaperone SecB. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:164. [PMID: 31297152 PMCID: PMC6598250 DOI: 10.1186/s13068-019-1507-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Escherichia coli has been proved to be one promising platform chassis for the production of various natural products, such as biofuels. Product toxicity is one of the main bottlenecks for achieving maximum production of biofuels. Host strain engineering is an effective approach to alleviate solvent toxicity issue in fermentation. RESULTS Thirty chaperones were overexpressed in E. coli JM109, and SecB recombinant strain was identified with the highest n-butanol tolerance. The tolerance (T) of E. coli overexpressing SecB, calculated by growth difference in the presence and absence of solvents, was determined to be 9.13% at 1.2% (v/v) butanol, which was 3.2-fold of the control strain. Random mutagenesis of SecB was implemented and homologously overexpressed in E. coli, and mutant SecBT10A was identified from 2800 variants rendering E. coli the highest butanol tolerance. Saturation mutagenesis on T10 site revealed that hydrophobic residues were required for high butanol tolerance of E. coli. Compared with wild-type (WT) SecB, the T of SecBT10A strain was further increased from 9.14 to 14.4% at 1.2% butanol, which was 5.3-fold of control strain. Remarkably, E. coli engineered with SecBT10A could tolerate as high as 1.8% butanol (~ 14.58 g/L). The binding affinity of SecBT10A toward model substrate unfolded maltose binding protein (preMBP) was 11.9-fold of that of WT SecB as determined by isothermal titration calorimetry. Residue T10 locates at the entrance of hydrophobic substrate binding groove of SecB, and might play an important role in recognition and binding of cargo proteins. CONCLUSIONS SecB chaperone was identified by chaperone mining to be effective in enhancing butanol tolerance of E. coli. Maximum butanol tolerance of E. coli could reach 1.6% and 1.8% butanol by engineering single gene of SecB or SecBT10A. Hydrophobic interaction is vital for enhanced binding affinity between SecB and cargo proteins, and therefore improved butanol tolerance.
Collapse
Affiliation(s)
- Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Anning Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Lin Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
19
|
Guo Y, Lu B, Tang H, Bi D, Zhang Z, Lin L, Pang H. Tolerance against butanol stress by disrupting succinylglutamate desuccinylase inEscherichia coli. RSC Adv 2019; 9:11683-11695. [PMID: 35517002 PMCID: PMC9063396 DOI: 10.1039/c8ra09711a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/30/2019] [Indexed: 12/24/2022] Open
Abstract
The four-carbon alcohol, butanol, is emerging as a promising biofuel and efforts have been undertaken to improve several microbial hosts for its production.
Collapse
Affiliation(s)
- Yuan Guo
- Guangxi Academy of Sciences
- Nanning 530007
- China
| | - Bo Lu
- Guangxi Academy of Sciences
- Nanning 530007
- China
| | | | - Dewu Bi
- Guangxi University
- Nanning 530004
- China
| | | | - Lihua Lin
- Guangxi Academy of Sciences
- Nanning 530007
- China
| | - Hao Pang
- Guangxi Academy of Sciences
- Nanning 530007
- China
| |
Collapse
|
20
|
Horinouchi T, Maeda T, Furusawa C. Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World J Microbiol Biotechnol 2018; 34:157. [PMID: 30341456 PMCID: PMC6208762 DOI: 10.1007/s11274-018-2542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 12/16/2022]
Abstract
Microbes are capable of producing alcohols, making them an important source of alternative energy that can replace fossil fuels. However, these alcohols can be toxic to the microbes themselves, retaring or inhibiting cell growth and decreasing the production yield. One solution is improving the alcohol tolerance of such alcohol-producing organisms. Advances in omics technologies, including transcriptomic, proteomic, metabolomic, and genomic technologies, have helped us understand the complex mechanisms underlying alcohol toxicity, and such advances could assist in devising strategies for engineering alcohol-tolerant strains. This review highlights these advances and discusses strategies for improving alcohol tolerance using omics analyses.
Collapse
Affiliation(s)
- Takaaki Horinouchi
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Tomoya Maeda
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
21
|
Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnol Adv 2017; 35:1040-1048. [DOI: 10.1016/j.biotechadv.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/19/2023]
|
22
|
Park YJ, Lee KH, Baek MS, Kim DM. High-throughput engineering of initial coding regions for maximized production of recombinant proteins. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0344-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Gong Z, Nielsen J, Zhou YJ. Engineering Robustness of Microbial Cell Factories. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/13/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiwei Gong
- Division of BiotechnologyDalian Institute of Chemical PhysicsCAS457 Zhongshan RoadDalian 116023P.R. China
- College of Chemistry and Chemical EngineeringWuhan University of Science and Technology947 Heping RoadWuhan 430081P.R. China
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyKemivägen 10 Gothenburg SE‐41296Sweden
| | - Yongjin J. Zhou
- Division of BiotechnologyDalian Institute of Chemical PhysicsCAS457 Zhongshan RoadDalian 116023P.R. China
| |
Collapse
|
24
|
Qiu Z, Jiang R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:125. [PMID: 28515784 PMCID: PMC5433082 DOI: 10.1186/s13068-017-0806-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/27/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. RESULTS Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. CONCLUSIONS This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae, which finally led to improvement in yeast ethanol tolerance and production.
Collapse
Affiliation(s)
- Zilong Qiu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Rongrong Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
25
|
Roointan A, Morowvat MH. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production. Biotechnol Genet Eng Rev 2017; 32:74-91. [PMID: 28052722 DOI: 10.1080/02648725.2016.1270095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.
Collapse
Affiliation(s)
- Amir Roointan
- a Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz , Iran.,c Department of Medical Biotechnology, School of Medicine , Fasa University of Medical Sciences , Fasa , Iran
| | - Mohammad Hossein Morowvat
- a Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz , Iran.,b Pharmaceutical Sciences Research Center, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
26
|
Wei LN, Zhu LW, Tang YJ. Succinate production positively correlates with the affinity of the global transcription factor Cra for its effector FBP in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:264. [PMID: 27980674 PMCID: PMC5146860 DOI: 10.1186/s13068-016-0679-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Effector binding is important for transcription factors, affecting both the pattern and function of transcriptional regulation to alter cell phenotype. Our previous work suggested that the affinity of the global transcription factor catabolite repressor/activator (Cra) for its effector fructose-1,6-bisphosphate (FBP) may contribute to succinate biosynthesis. To support this hypothesis, single-point and three-point mutations were proposed through the semi-rational design of Cra to improve its affinity for FBP. RESULTS For the first time, a positive correlation between succinate production and the affinity of Cra for FBP was revealed in Escherichia coli. Using the best-fit regression function, a cubic equation was used to examine and describe the relationship between succinate production and the affinity of Cra for FBP, demonstrating a significant positive correlation between the two factors (coefficient of determination R2 = 0.894, P = 0.000 < 0.01). The optimal mutant strain was Tang1683, which provided the lowest mutation energy of -4.78 kcal/mol and the highest succinate concentration of 92.7 g/L, which was 34% higher than that obtained using an empty vector control. The parameters for the interaction between Cra and DNA showed that Cra bound to the promoter regions of pck and aceB to activate the corresponding genes. Normally, Cra-regulated operons under positive control are deactivated in the presence of FBP. Therefore, theoretically, the enhanced affinity of Cra for FBP will inhibit the activation of pck and aceB. However, the activation of genes involved in CO2 fixation and the glyoxylate pathway was further improved by the Cra mutant, ultimately contributing to succinate biosynthesis. CONCLUSIONS Enhanced binding of Cra to FBP or active site mutations may eliminate the repressive effect caused by FBP, thus leading to increased activation of genes associated with succinate biosynthesis in the Cra mutant. This work demonstrates an important transcriptional regulation strategy in the metabolic engineering of succinate production and provides useful information for better understanding of the regulatory mechanisms of transcription factors.
Collapse
Affiliation(s)
- Li-Na Wei
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Li-Wen Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| |
Collapse
|
27
|
Wong SS, Mi L, Liao JC. Microbial Production of Butanols. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sio Si Wong
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - Luo Mi
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - James C. Liao
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| |
Collapse
|
28
|
Zhu LW, Xia ST, Wei LN, Li HM, Yuan ZP, Tang YJ. Enhancing succinic acid biosynthesis in Escherichia coli by engineering its global transcription factor, catabolite repressor/activator (Cra). Sci Rep 2016; 6:36526. [PMID: 27811970 PMCID: PMC5109907 DOI: 10.1038/srep36526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 10/17/2016] [Indexed: 11/09/2022] Open
Abstract
This study was initiated to improve E. coli succinate production by engineering the E. coli global transcription factor, Cra (catabolite repressor/activator). Random mutagenesis libraries were generated through error-prone PCR of cra. After re-screening and mutation site integration, the best mutant strain was Tang1541, which provided a final succinate concentration of 79.8 ± 3.1 g/L: i.e., 22.8% greater than that obtained using an empty vector control. The genes and enzymes involved in phosphoenolpyruvate (PEP) carboxylation and the glyoxylate pathway were activated, either directly or indirectly, through the mutation of Cra. The parameters for interaction of Cra and DNA indicated that the Cra mutant was bound to aceBAK, thereby activating the genes involved in glyoxylate pathway and further improving succinate production even in the presence of its effector fructose-1,6-bisphosphate (FBP). It suggested that some of the negative effect of FBP on Cra might have been counteracted through the enhanced binding affinity of the Cra mutant for FBP or the change of Cra structure. This work provides useful information about understanding the transcriptional regulation of succinate biosynthesis.
Collapse
Affiliation(s)
- Li-Wen Zhu
- School of Public Health, Wuhan University, Wuhan 430071 China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Shi-Tao Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Li-Na Wei
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Hong-Mei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Zhan-Peng Yuan
- School of Public Health, Wuhan University, Wuhan 430071 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| |
Collapse
|
29
|
Rau MH, Calero P, Lennen RM, Long KS, Nielsen AT. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Microb Cell Fact 2016; 15:176. [PMID: 27737709 PMCID: PMC5064937 DOI: 10.1186/s12934-016-0577-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023] Open
Abstract
Background Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Results Here, a systems biology approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, RpoS, OmpR, ArcA, Fur and GadX. These regulators, the genes within their regulons and the above mentioned cellular functions therefore constitute potential targets for increasing E. coli chemical tolerance. Fitness determination of genome-wide transposon mutants (Tn-seq) subjected to the same chemical stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene functions. Conclusions The combination of the transcriptional response and mutant screening provides general targets that can increase tolerance towards not only single, but multiple chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0577-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Holm Rau
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Patricia Calero
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Rebecca M Lennen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Katherine S Long
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Alex T Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| |
Collapse
|
30
|
Koppolu V, Vasigala VK. Role of Escherichia coli in Biofuel Production. Microbiol Insights 2016; 9:29-35. [PMID: 27441002 PMCID: PMC4946582 DOI: 10.4137/mbi.s10878] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
Abstract
Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions.
Collapse
Affiliation(s)
- Veerendra Koppolu
- Scientist, Department of Analytical Biotechnology, MedImmune/AstraZeneca, Gaithersburg, MD, USA.; Former affiliation: Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Veneela Kr Vasigala
- Rangaraya Medical College, NTR University of Health Sciences, Kakinada, AP, India
| |
Collapse
|
31
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
32
|
Peabody GL, Kao KC. Recent progress in biobutanol tolerance in microbial systems with an emphasis on Clostridium. FEMS Microbiol Lett 2016; 363:fnw017. [PMID: 26818252 DOI: 10.1093/femsle/fnw017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 01/20/2023] Open
Abstract
Biobased production of butanol promises a more sustainable route for industrial production. However, butanol toxicity remains a barrier for achieving high product titers. Investigation into butanol stress has shed some light on its modes of toxicity. Unfortunately, there still remain significant shortfalls in our understanding of the complex interactions of butanol with cells. To address this knowledge gap, a diverse range of tools have been employed to gain a better understanding of the adverse effects of butanol on the cell. These findings have lead to the identification of possible molecular mechanisms associated with butanol tolerance, which can be harnessed for future strain development efforts. This review focuses on recent efforts to address the toxicity of butanol in microbial producers and offers some perspectives on the future direction of this research sector.
Collapse
Affiliation(s)
- George L Peabody
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
33
|
Engineering Synthetic Multistress Tolerance in Escherichia coli by Using a Deinococcal Response Regulator, DR1558. Appl Environ Microbiol 2015; 82:1154-1166. [PMID: 26655758 DOI: 10.1128/aem.03371-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
Cellular robustness is an important trait for industrial microbes, because the microbial strains are exposed to a multitude of different stresses during industrial processes, such as fermentation. Thus, engineering robustness in an organism in order to push the strains toward maximizing yield has become a significant topic of research. We introduced the deinococcal response regulator DR1558 into Escherichia coli (strain Ec-1558), thereby conferring tolerance to hydrogen peroxide (H2O2). The reactive oxygen species (ROS) level in strain Ec-1558 was reduced due to the increased KatE catalase activity. Among four regulators of the oxidative-stress response, OxyR, RpoS, SoxS, and Fur, we found that the expression of rpoS increased in Ec-1558, and we confirmed this increase by Western blot analysis. Electrophoretic mobility shift assays showed that DR1558 bound to the rpoS promoter. Because the alternative sigma factor RpoS regulates various stress resistance-related genes, we performed stress survival analysis using an rpoS mutant strain. Ec-1558 was able to tolerate a low pH, a high temperature, and high NaCl concentrations in addition to H2O2, and the multistress tolerance phenotype disappeared in the absence of rpoS. Microarray analysis clearly showed that a variety of stress-responsive genes that are directly or indirectly controlled by RpoS were upregulated in strain Ec-1558. These findings, taken together, indicate that the multistress tolerance conferred by DR1558 is likely routed through RpoS. In the present study, we propose a novel strategy of employing an exogenous response regulator from polyextremophiles for strain improvement.
Collapse
|
34
|
Building cellular pathways and programs enabled by the genetic diversity of allo-genomes and meta-genomes. Curr Opin Biotechnol 2015; 36:16-31. [DOI: 10.1016/j.copbio.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/21/2022]
|
35
|
El Sahili A, Kwasiborski A, Mothe N, Velours C, Legrand P, Moréra S, Faure D. Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation. PLoS One 2015; 10:e0141718. [PMID: 26554837 PMCID: PMC4640858 DOI: 10.1371/journal.pone.0141718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022] Open
Abstract
Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated.
Collapse
Affiliation(s)
- Abbas El Sahili
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Anthony Kwasiborski
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Nicolas Mothe
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Christophe Velours
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, Gif-sur-Yvette 91198, France
| | - Solange Moréra
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
- * E-mail: (SM); (DF)
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
- * E-mail: (SM); (DF)
| |
Collapse
|
36
|
cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Appl Microbiol Biotechnol 2015; 99:4533-43. [DOI: 10.1007/s00253-015-6587-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 02/05/2023]
|
37
|
Huang L, Pu Y, Yang X, Zhu X, Cai J, Xu Z. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol 2015; 199:55-61. [PMID: 25687103 DOI: 10.1016/j.jbiotec.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 01/23/2023]
Abstract
Transcriptional engineering has received significant attention for improving strains by modulating the behavior of transcription factors, which could be used to reprogram a series of gene transcriptions and enable multiple simultaneous modifications at the genomic level. In this study, engineering of the cAMP receptor protein (CRP) was explored with the aim of subtly balancing entire pathway networks and potentially improving lycopene production without significant genetic intervention in other pathways. Amino acid mutations were introduced to CRP by error-prone PCR, and three variants (mcrp26, mcrp159 and mcrp424) with increased lycopene productivity were screened. Combinations of three point mutations were then created via site-directed mutagenesis. The best mutant gene (mcrp26) was integrated into the genome of E. coli BW25113-BIE to replace the wild-type crp gene (MT-1), which resulted in a higher lycopene production (18.49mg/g DCW) compared to the original strain (WT). The mutant strain MT-1 was further investigated in a 10-L bench-top fermentor with a lycopene yield of 128mg/l at 20h, approximately 25% higher than WT. DNA microarray analyses showed that 396 genes (229 up-regulated and 167 down-regulated) were differentially expressed in the mutant MT-1 compared to WT. Finally, the introduction of the mutant crp gene (mcrp26) increased β-carotene production in E. coli. This is the first report of improving the phenotype for metabolite overproduction in E. coli using a CRP engineering strategy.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yue Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiuliang Yang
- Shangdong Jincheng Biopharmaceutical Corporation Limited, Zibo, China
| | - Xiangcheng Zhu
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, China
| | - Jin Cai
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Liu W, Jiang R. Combinatorial and high-throughput screening approaches for strain engineering. Appl Microbiol Biotechnol 2015; 99:2093-104. [DOI: 10.1007/s00253-015-6400-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/31/2022]
|
39
|
Jia H, Fan Y, Feng X, Li C. Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology. Front Bioeng Biotechnol 2014; 2:44. [PMID: 25368869 PMCID: PMC4202804 DOI: 10.3389/fbioe.2014.00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022] Open
Abstract
Chemical conversions mediated by microorganisms, otherwise known as microbial biotransformations, are playing an increasingly important role within the biotechnology industry. Unfortunately, the growth and production of microorganisms are often hampered by a number of stressful conditions emanating from environment fluctuations and/or metabolic imbalances such as high temperature, high salt condition, strongly acidic solution, and presence of toxic metabolites. Therefore, exploring methods to improve the stress tolerance of host organisms could significantly improve the biotransformation process. With the help of synthetic biology, it is now becoming feasible to implement strategies to improve the stress-resistance of the existing hosts. This review summarizes synthetic biology efforts to enhance the efficiency of biotransformations by improving the robustness of microbes. Particular attention will be given to strategies at the cellular and the microbial community levels.
Collapse
Affiliation(s)
- Haiyang Jia
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Yanshuang Fan
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Xudong Feng
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Chun Li
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| |
Collapse
|