1
|
Basallo O, Perez L, Lucido A, Sorribas A, Marin-Saguino A, Vilaprinyo E, Perez-Fons L, Albacete A, Martínez-Andújar C, Fraser PD, Christou P, Capell T, Alves R. Changing biosynthesis of terpenoid percursors in rice through synthetic biology. FRONTIERS IN PLANT SCIENCE 2023; 14:1133299. [PMID: 37465386 PMCID: PMC10350630 DOI: 10.3389/fpls.2023.1133299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Many highly valued chemicals in the pharmaceutical, biotechnological, cosmetic, and biomedical industries belong to the terpenoid family. Biosynthesis of these chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing plants for use as a platform to use IPP/DMAPP and produce high value terpenoids is an important biotechnological goal. Still, IPP/DMAPP are the precursors to many plant developmental hormones. This creates severe challenges in redirecting IPP/DMAPP towards production of non-cognate plant metabolites. A potential solution to this problem is increasing the IPP/DMAPP production flux in planta. Here, we aimed at discovering, understanding, and predicting the effects of increasing IPP/DMAPP production in plants through modelling. We used synthetic biology to create rice lines containing an additional ectopic MVA biosynthetic pathway for producing IPP/DMAPP. The rice lines express three alternative versions of the additional MVA pathway in the plastid, in addition to the normal endogenous pathways. We collected data for changes in macroscopic and molecular phenotypes, gene expression, isoprenoid content, and hormone abundance in those lines. To integrate the molecular and macroscopic data and develop a more in depth understanding of the effects of engineering the exogenous pathway in the mutant rice lines, we developed and analyzed data-centric, line-specific, multilevel mathematical models. These models connect the effects of variations in hormones and gene expression to changes in macroscopic plant phenotype and metabolite concentrations within the MVA and MEP pathways of WT and mutant rice lines. Our models allow us to predict how an exogenous IPP/DMAPP biosynthetic pathway affects the flux of terpenoid precursors. We also quantify the long-term effect of plant hormones on the dynamic behavior of IPP/DMAPP biosynthetic pathways in seeds, and predict plant characteristics, such as plant height, leaf size, and chlorophyll content from molecular data. In addition, our models are a tool that can be used in the future to help in prioritizing re-engineering strategies for the exogenous pathway in order to achieve specific metabolic goals.
Collapse
Affiliation(s)
- Orio Basallo
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Perez
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
| | - Abel Lucido
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Albert Sorribas
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Alberto Marin-Saguino
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Ester Vilaprinyo
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, United Kingdom
| | - Alfonso Albacete
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Murcia, Murcia, Spain
- Department of Plant Production and Agrotechnology, Institute for Agri-Food Research and Development of Murcia, Murcia, Spain
| | - Cristina Martínez-Andújar
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Murcia, Murcia, Spain
| | - Paul D. Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, United Kingdom
| | - Paul Christou
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Teresa Capell
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
| | - Rui Alves
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
2
|
Yunus IS, Lee TS. Applications of targeted proteomics in metabolic engineering: advances and opportunities. Curr Opin Biotechnol 2022; 75:102709. [DOI: 10.1016/j.copbio.2022.102709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022]
|
3
|
Phenotype-centric modeling for rational metabolic engineering. Metab Eng 2022; 72:365-375. [DOI: 10.1016/j.ymben.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
|
4
|
Kabernick DC, Gostick JT, Ward VCA. Kinetic characterization and modelling of sequentially entrapped enzymes in 3D-printed PMMA microfluidic reactors for the synthesis of amorphadiene via the isopentenol utilization pathway. Biotechnol Bioeng 2022; 119:1239-1251. [PMID: 35099806 DOI: 10.1002/bit.28046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The development of cascade cell-free systems reduces the requirement for extensive metabolic engineering and optimization to increase in vivo pathway flux. For continuous operation and increased stability, direct enzyme entrapment during reactor fabrication by 3D-printing allows for simple immobilization procedures without enzyme-specific optimization. In this work, the isopentenol utilization pathway (IUP) was selected for the synthesis of amorphadiene, an anti-malaria drug precursor, using a 3D-printed, sequentially immobilized, microfluidic reactor. As an initial proof-of-concept, alkaline phosphatase (ALP) was entrapped in a poly(methyl methacrylate) (PMMA)-based matrix during stereolithographic 3D-printing and was kinetically characterized. No significant shift of the kinetically modelled substrate binding affinity was observed during immobilization and continuous operation of an entrapped ALP microfluidic reactor displayed high stability. The IUP enzymes retained moderate activity during entrapment (6.6-9.6 %) relative to the free enzyme solutions, however the sequentially immobilized IUP microfluidic reactor was severely limited by low pathway flux due to the use of stereolithographic 3D-printing which significantly diluted enzyme concentrations for printing. Although this study demonstrated the use of additive manufacturing for the synthesis of amorphadiene using a complex five-enzyme cascade microfluidic reactor, stereolithographic enzyme entrapment remains limited in scope and dependent on advancements to additive manufacturing technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Derek C Kabernick
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| | - Jeff T Gostick
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| | - Valerie C A Ward
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| |
Collapse
|
5
|
Wang Y, Zhou S, Liu Q, Jeong SH, Zhu L, Yu X, Zheng X, Wei G, Kim SW, Wang C. Metabolic Engineering of Escherichia coli for Production of α-Santalene, a Precursor of Sandalwood Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13135-13142. [PMID: 34709805 DOI: 10.1021/acs.jafc.1c05486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
α-Santalene belongs to a class of natural compounds with many physiological functions and medical applications. Advances in metabolic engineering enable non-native hosts (e.g., Escherichia coli) to produce α-santalene, the precursor of sandalwood oil. However, imbalances in enzymatic activity often result in a metabolic burden on hosts and repress the synthetic capacity of the desired product. In this work, we manipulated ribosome binding sites (RBSs) to optimize an α-santalene synthetic operon in E. coli, and the best engineered E. coli NA-IS3D strain could produce α-santalene at a titer of 412 mg·L-1. Concerning the observation of the inverse correlation between indole synthesis and α-santalene production, this study speculated that indole-associated amino acid metabolism would be competitive to the synthesis of α-santalene rather than indole toxicity itself. The deletion of tnaA could lead to a 1.5-fold increase in α-santalene production to a titer of 599 mg·L-1 in E. coli tnaA- NA-IS3D. Our results suggested that the optimization of RBS sets of the synthetic module and attenuation of the competitive pathway are promising approaches for improving the production of terpenoids including α-santalene.
Collapse
Affiliation(s)
- Yan Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Shenting Zhou
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Qian Liu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Seong-Hee Jeong
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Liyan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Xiangming Yu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Xiaojian Zheng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
6
|
Liu CL, Xue K, Yang Y, Liu X, Li Y, Lee TS, Bai Z, Tan T. Metabolic engineering strategies for sesquiterpene production in microorganism. Crit Rev Biotechnol 2021; 42:73-92. [PMID: 34256675 DOI: 10.1080/07388551.2021.1924112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sesquiterpenes are a large variety of terpene natural products, widely existing in plants, fungi, marine organisms, insects, and microbes. Value-added sesquiterpenes are extensively used in industries such as: food, drugs, fragrances, and fuels. With an increase in market demands and the price of sesquiterpenes, the biosynthesis of sesquiterpenes by microbial fermentation methods from renewable feedstocks is acquiring increasing attention. Synthetic biology provides robust tools of sesquiterpene production in microorganisms. This review presents a summary of metabolic engineering strategies on the hosts and pathway engineering for sesquiterpene production. Advances in synthetic biology provide new strategies on the creation of desired hosts for sesquiterpene production. Especially, metabolic engineering strategies for the production of sesquiterpenes such as: amorphadiene, farnesene, bisabolene, and caryophyllene are emphasized in: Escherichia coli, Saccharomyces cerevisiae, and other microorganisms. Challenges and future perspectives of the bioprocess for translating sesquiterpene production into practical industrial work are also discussed.
Collapse
Affiliation(s)
- Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Kai Xue
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| |
Collapse
|
7
|
Navale GR, Dharne MS, Shinde SS. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:457-475. [PMID: 33394155 DOI: 10.1007/s00253-020-11040-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Isoprenoids, often called terpenoids, are the most abundant and highly diverse family of natural organic compounds. In plants, they play a distinct role in the form of photosynthetic pigments, hormones, electron carrier, structural components of membrane, and defence. Many isoprenoids have useful applications in the pharmaceutical, nutraceutical, and chemical industries. They are synthesized by various isoprenoid synthase enzymes by several consecutive steps. Recent advancement in metabolic engineering and synthetic biology has enabled the production of these isoprenoids in the heterologous host systems like Escherichia coli and Saccharomyces cerevisiae. Both heterologous systems have been engineered for large-scale production of value-added isoprenoids. This review article will provide the detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids. The review particularly highlighted the efforts taken for the production of C5-C20 isoprenoids by metabolic engineering techniques in E. coli and S. cerevisiae over a decade. The challenges and strategies are also discussed in detail for scale-up and engineering of isoprenoids in the heterologous host systems.Key points• Isoprenoids are beneficial and valuable natural products.• E. coli and S. cerevisiae are the promising host for isoprenoid biosynthesis.• Emerging techniques in synthetic biology enabled the improved production.• Need to expand the catalogue and scale-up of un-engineered isoprenoids. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Govinda R Navale
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
| | - Sandip S Shinde
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Department Industrial and Chemical Engineering, Institute of Chemical Technology Mumbai Marathwada Campus, Jalna, 431213, India.
| |
Collapse
|
8
|
Jeong SH, Park JB, Wang Y, Kim GH, Zhang G, Wei G, Wang C, Kim SW. Regulatory molecule cAMP changes cell fitness of the engineered Escherichia coli for terpenoids production. Metab Eng 2020; 65:178-184. [PMID: 33246165 DOI: 10.1016/j.ymben.2020.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023]
Abstract
Terpenoids are a class of natural compounds with many important functions and applications. They are synthesized from a long synthetic pathway of isoprenyl unit coupling with the myriads of terpene synthases. Owing to the catalytic divergence of terpenoids synthesis, microbial production of terpenoids is compromised to the complexity of pathway engineering and suffers from the metabolic engineering burden. In this work, the adaptive Escherichia coli HP variant exhibited a general cell fitness in terpenoid synthesis. Especially, it could yield taxadiene of 193.2 mg/L in a test tube culture, which is a five-fold increase over the production in the wild type E. coli DH5α. Mutational analyses indicated that IS10 insertion in adenylate cyclase CyaA (CyaAHP) resulted in lowering intracellular cyclic AMP (cAMP), which could regulate its receptor protein CRP to rewire cell metabolism and contributed to the improved cell fitness. Our results suggested a way to manipulate cell fitness for terpenoids production and other products.
Collapse
Affiliation(s)
- Seong-Hee Jeong
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Yan Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Gye-Hwan Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Gaochuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China.
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
9
|
Orsi E, Beekwilder J, Eggink G, Kengen SWM, Weusthuis RA. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol Bioeng 2020; 118:531-541. [PMID: 33038009 PMCID: PMC7894463 DOI: 10.1002/bit.27593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Microbial cell factories are the workhorses of industrial biotechnology and improving their performances can significantly optimize industrial bioprocesses. Microbial strain engineering is often employed for increasing the competitiveness of bio‐based product synthesis over more classical petroleum‐based synthesis. Recently, efforts for strain optimization have been standardized within the iterative concept of “design‐build‐test‐learn” (DBTL). This approach has been successfully employed for the improvement of traditional cell factories like Escherichia coli and Saccharomyces cerevisiae. Within the past decade, several new‐to‐industry microorganisms have been investigated as novel cell factories, including the versatile α‐proteobacterium Rhodobacter sphaeroides. Despite its history as a laboratory strain for fundamental studies, there is a growing interest in this bacterium for its ability to synthesize relevant compounds for the bioeconomy, such as isoprenoids, poly‐β‐hydroxybutyrate, and hydrogen. In this study, we reflect on the reasons for establishing R. sphaeroides as a cell factory from the perspective of the DBTL concept. Moreover, we discuss current and future opportunities for extending the use of this microorganism for the bio‐based economy. We believe that applying the DBTL pipeline for R. sphaeroides will further strengthen its relevance as a microbial cell factory. Moreover, the proposed use of strain engineering via the DBTL approach may be extended to other microorganisms that have not been critically investigated yet for industrial applications.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Gerrit Eggink
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
10
|
Markina NM, Kotlobay AA, Tsarkova AS. Heterologous Metabolic Pathways: Strategies for Optimal Expression in Eukaryotic Hosts. Acta Naturae 2020; 12:28-39. [PMID: 32742725 PMCID: PMC7385092 DOI: 10.32607/actanaturae.10966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Heterologous pathways are linked series of biochemical reactions occurring in a host organism after the introduction of foreign genes. Incorporation of metabolic pathways into host organisms is a major strategy used to increase the production of valuable secondary metabolites. Unfortunately, simple introduction of the pathway genes into the heterologous host in most cases does not result in successful heterologous expression. Extensive modification of heterologous genes and the corresponding enzymes on many different levels is required to achieve high target metabolite production rates. This review summarizes the essential techniques used to create heterologous biochemical pathways, with a focus on the key challenges arising in the process and the major strategies for overcoming them.
Collapse
Affiliation(s)
- N. M. Markina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Planta LLC, Moscow, 121205 Russia
| | - A. A. Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
11
|
Buldum G, Tsipa A, Mantalaris A. Linking Engineered Gene Circuit Kinetic Modeling to Cellulose Biosynthesis Prediction in Escherichia coli: Toward Bioprocessing of Microbial Cell Factories. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gizem Buldum
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Argyro Tsipa
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Ward VC, Chatzivasileiou AO, Stephanopoulos G. Cell free biosynthesis of isoprenoids from isopentenol. Biotechnol Bioeng 2019; 116:3269-3281. [DOI: 10.1002/bit.27146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/01/2019] [Accepted: 08/11/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Valerie C.A. Ward
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering University of Waterloo Waterloo Ontario Canada
| | | | - Gregory Stephanopoulos
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| |
Collapse
|
13
|
Ward VCA, Chatzivasileiou AO, Stephanopoulos G. Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiol Lett 2019; 365:4953741. [PMID: 29718190 DOI: 10.1093/femsle/fny079] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/25/2018] [Indexed: 12/22/2022] Open
Abstract
Metabolic engineering is the practice of using directed genetic manipulations to rewire cellular metabolism primarily with the aim to transform the organism into a single-celled chemical factory. Using biological processes, we can produce more complex chemicals in a more sustainable way. This is particularly important for chemicals which are hard to synthesize using traditional chemistry. However, cells have evolved for growth and must be engineered to produce a single chemical at commercially viable levels. This review focuses on the strategies used to rewire cellular metabolism to produce chemicals using isoprenoid production in Escherichia coli as an example that illustrates many of the challenges faced in metabolic engineering.
Collapse
Affiliation(s)
- Valerie C A Ward
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | | | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Chen Y, Guenther JM, Gin JW, Chan LJG, Costello Z, Ogorzalek TL, Tran HM, Blake-Hedges JM, Keasling JD, Adams PD, García Martín H, Hillson NJ, Petzold CJ. Automated “Cells-To-Peptides” Sample Preparation Workflow for High-Throughput, Quantitative Proteomic Assays of Microbes. J Proteome Res 2019; 18:3752-3761. [DOI: 10.1021/acs.jproteome.9b00455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Joel M. Guenther
- Sandia National Laboratories (NTESS), Livermore, California 94551, United States
| | | | | | | | | | - Huu M. Tran
- Sandia National Laboratories (NTESS), Livermore, California 94551, United States
| | | | - Jay D. Keasling
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1460, United States
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Center for Synthetic Biochemistry, Synthetic Biology Institute, Shenzhen Institutes for Advanced Technologies, Shenzhen 518000, China
| | | | | | | | | |
Collapse
|
15
|
Dudley QM, Nash CJ, Jewett MC. Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates. Synth Biol (Oxf) 2019; 4:ysz003. [PMID: 30873438 PMCID: PMC6407499 DOI: 10.1093/synbio/ysz003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 11/25/2022] Open
Abstract
Isoprenoids are an attractive class of metabolites for enzymatic synthesis from renewable substrates. However, metabolic engineering of microorganisms for monoterpenoid production is limited by the need for time-consuming, and often non-intuitive, combinatorial tuning of biosynthetic pathway variations to meet design criteria. Towards alleviating this limitation, the goal of this work was to build a modular, cell-free platform for construction and testing of monoterpenoid pathways, using the fragrance and flavoring molecule limonene as a model. In this platform, multiple Escherichia coli lysates, each enriched with a single overexpressed pathway enzyme, are mixed to construct the full biosynthetic pathway. First, we show the ability to synthesize limonene from six enriched lysates with mevalonate substrate, an adenosine triphosphate (ATP) source, and cofactors. Next, we extend the pathway to use glucose as a substrate, which relies on native metabolism in the extract to convert glucose to acetyl-CoA along with three additional enzymes to convert acetyl-CoA to mevalonate. We find that the native E. coli farnesyl diphosphate synthase (IspA) is active in the lysate and diverts flux from the pathway intermediate geranyl pyrophospahte to farnesyl pyrophsophate and the byproduct farnesol. By adjusting the relative levels of cofactors NAD+, ATP and CoA, the system can synthesize 0.66 mM (90.2 mg l-1) limonene over 24 h, a productivity of 3.8 mg l-1 h-1. Our results highlight the flexibility of crude lysates to sustain complex metabolism and, by activating a glucose-to-limonene pathway with 9 heterologous enzymes encompassing 20 biosynthetic steps, expands an approach of using enzyme-enriched lysates for constructing, characterizing and prototyping enzymatic pathways.
Collapse
Affiliation(s)
- Quentin M Dudley
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Connor J Nash
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute Northwestern University, Chicago, IL, USA
| |
Collapse
|
16
|
Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 2018; 189:75-90. [PMID: 29452276 DOI: 10.1016/j.jprot.2018.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
|
18
|
Shymansky CM, Wang G, Baidoo EEK, Gin J, Apel AR, Mukhopadhyay A, García Martín H, Keasling JD. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism. Front Bioeng Biotechnol 2017; 5:31. [PMID: 28596955 PMCID: PMC5443151 DOI: 10.3389/fbioe.2017.00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/25/2017] [Indexed: 11/13/2022] Open
Abstract
13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium.
Collapse
Affiliation(s)
- Christopher M Shymansky
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA.,Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - George Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jennifer Gin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Amanda Reider Apel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Héctor García Martín
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA.,DOE Agile Biofoundry, Emeryville, CA, USA.,BCAM, Basque Center for Applied Mathematics, Mazarredo, Bilbao, Basque Country, Spain
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA.,Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
19
|
Mendez-Perez D, Alonso-Gutierrez J, Hu Q, Molinas M, Baidoo EEK, Wang G, Chan LJG, Adams PD, Petzold CJ, Keasling JD, Lee TS. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol Bioeng 2017; 114:1703-1712. [PMID: 28369701 DOI: 10.1002/bit.26296] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/04/2017] [Accepted: 03/24/2017] [Indexed: 12/27/2022]
Abstract
Monoterpenes (C10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes. Biotechnol. Bioeng. 2017;114: 1703-1712. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Mendez-Perez
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jorge Alonso-Gutierrez
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Qijun Hu
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Margaux Molinas
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Edward E K Baidoo
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - George Wang
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Leanne J G Chan
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Paul D Adams
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Christopher J Petzold
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jay D Keasling
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Horsholm, Denmark.,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California.,Department of Bioengineering, University of California, Berkeley, California
| | - Taek S Lee
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
20
|
Tashiro M, Kiyota H, Kawai-Noma S, Saito K, Ikeuchi M, Iijima Y, Umeno D. Bacterial Production of Pinene by a Laboratory-Evolved Pinene-Synthase. ACS Synth Biol 2016; 5:1011-20. [PMID: 27247193 DOI: 10.1021/acssynbio.6b00140] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Successful feeding of the substrate geranylpyrophosphate (GPP) to monoterpene synthase is critical to the efficient microbial production of monoterpenes. Overexpression of GPP synthases, metabolic channeling from GPP synthase to terpene synthases, and down-tuning of endogenous competitors have been successfully used to increase the production of monoterpene. Nevertheless, the production of monoterpenes has remained considerably lower than that of hemi-/sesqui-terpenoids. We tested whether it is effective to improve the cellular activity of monoterpene synthases. To this end, we developed a high-throughput screening system to monitor for elevated GPP consumption. Through a single round of mutagenesis and screening, we isolated a pinene synthase variant that outperformed the wild-type (parent) enzyme in multiple contexts in Escherichia coli and cyanobacteria. The purified variant exhibited drastically altered metal dependency, enabling to keep the activity in the cytosol that is manganese-deficient. Coexpression of this variant with mevalonate pathway enzymes, isopentenylpyrophosphate isomerase, and GPP synthase yielded 140 mg/L pinene in a flask culture.
Collapse
Affiliation(s)
- Miki Tashiro
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Hiroshi Kiyota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeko Kawai-Noma
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Kyoichi Saito
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Masahiko Ikeuchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life
Sciences (Biology), Graduate School of Arts and Science, University of Tokyo, 3-8-1 Meguro-ku, Tokyo 153-8902, Japan
| | - Yoko Iijima
- Department of Nutrition
and Life Science, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
- Precursory Research
for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Zhang F, Chen N, Zhou J, Wu R. Protonation-Dependent Diphosphate Cleavage in FPP Cyclases and Synthases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
22
|
Mellor J, Grigoras I, Carbonell P, Faulon JL. Semisupervised Gaussian Process for Automated Enzyme Search. ACS Synth Biol 2016; 5:518-28. [PMID: 27007080 DOI: 10.1021/acssynbio.5b00294] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM. Therefore, we also demonstrate using Gaussian process regression to predict KM given a substrate-enzyme pair.
Collapse
Affiliation(s)
- Joseph Mellor
- School
of Chemistry, University of Manchester, Manchester M13 9PL, U.K
- Manchester
Institute of Biotechnology, University of Manchester, Manchester M13 9PL, U.K
| | - Ioana Grigoras
- iSSB,
Institute of Systems and Synthetic Biology, CNRS, University of Évry-Val-d’Essonne, 91000 Évry, France
| | - Pablo Carbonell
- SYNBIOCHEM
Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester M13 9PL, U.K
| | - Jean-Loup Faulon
- School
of Chemistry, University of Manchester, Manchester M13 9PL, U.K
- iSSB,
Institute of Systems and Synthetic Biology, CNRS, University of Évry-Val-d’Essonne, 91000 Évry, France
- SYNBIOCHEM
Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester M13 9PL, U.K
- MICALIS Institute, INRA, 78352 Jouy en Jossas, France
| |
Collapse
|
23
|
Brunk E, George KW, Alonso-Gutierrez J, Thompson M, Baidoo E, Wang G, Petzold CJ, McCloskey D, Monk J, Yang L, O'Brien EJ, Batth TS, Martin HG, Feist A, Adams PD, Keasling JD, Palsson BO, Lee TS. Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow. Cell Syst 2016; 2:335-46. [PMID: 27211860 PMCID: PMC4882250 DOI: 10.1016/j.cels.2016.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/18/2016] [Accepted: 04/04/2016] [Indexed: 12/31/2022]
Abstract
Understanding the complex interactions that occur between heterologous and native biochemical pathways represents a major challenge in metabolic engineering and synthetic biology. We present a workflow that integrates metabolomics, proteomics, and genome-scale models of Escherichia coli metabolism to study the effects of introducing a heterologous pathway into a microbial host. This workflow incorporates complementary approaches from computational systems biology, metabolic engineering, and synthetic biology; provides molecular insight into how the host organism microenvironment changes due to pathway engineering; and demonstrates how biological mechanisms underlying strain variation can be exploited as an engineering strategy to increase product yield. As a proof of concept, we present the analysis of eight engineered strains producing three biofuels: isopentenol, limonene, and bisabolene. Application of this workflow identified the roles of candidate genes, pathways, and biochemical reactions in observed experimental phenomena and facilitated the construction of a mutant strain with improved productivity. The contributed workflow is available as an open-source tool in the form of iPython notebooks.
Collapse
Affiliation(s)
- Elizabeth Brunk
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin W George
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jorge Alonso-Gutierrez
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mitchell Thompson
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Edward Baidoo
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - George Wang
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Jonathan Monk
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Edward J O'Brien
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Tanveer S Batth
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Hector Garcia Martin
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam Feist
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul D Adams
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay D Keasling
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Horsholm, Denmark; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Horsholm, Denmark.
| | - Taek Soon Lee
- Joint Bioenergy Institute (JBEI), 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2016; 2:16009. [PMID: 28725470 PMCID: PMC5516863 DOI: 10.1038/npjsba.2016.9] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023] Open
Abstract
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.
Collapse
Affiliation(s)
- Victor Chubukov
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Héctor García Martín
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
25
|
Liao P, Hemmerlin A, Bach TJ, Chye ML. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv 2016; 34:697-713. [PMID: 26995109 DOI: 10.1016/j.biotechadv.2016.03.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 01/03/2023]
Abstract
The cytosol-localised mevalonic acid (MVA) pathway delivers the basic isoprene unit isopentenyl diphosphate (IPP). In higher plants, this central metabolic intermediate is also synthesised by the plastid-localised methylerythritol phosphate (MEP) pathway. Both MVA and MEP pathways conspire through exchange of intermediates and regulatory interactions. Products downstream of IPP such as phytosterols, carotenoids, vitamin E, artemisinin, tanshinone and paclitaxel demonstrate antioxidant, cholesterol-reducing, anti-ageing, anticancer, antimalarial, anti-inflammatory and antibacterial activities. Other isoprenoid precursors including isoprene, isoprenol, geraniol, farnesene and farnesol are economically valuable. An update on the MVA pathway and its interaction with the MEP pathway is presented, including the improvement in the production of phytosterols and other isoprenoid derivatives. Such attempts are for instance based on the bioengineering of microbes such as Escherichia coli and Saccharomyces cerevisiae, as well as plants. The function of relevant genes in the MVA pathway that can be utilised in metabolic engineering is reviewed and future perspectives are presented.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Andréa Hemmerlin
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67083 Strasbourg, France.
| | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67083 Strasbourg, France.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
26
|
Costa RS, Hartmann A, Vinga S. Kinetic modeling of cell metabolism for microbial production. J Biotechnol 2015; 219:126-41. [PMID: 26724578 DOI: 10.1016/j.jbiotec.2015.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations.
Collapse
Affiliation(s)
- Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Andras Hartmann
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
27
|
Advances in proteomics for production strain analysis. Curr Opin Biotechnol 2015; 35:111-7. [DOI: 10.1016/j.copbio.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/28/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
|
28
|
Rites of passage: requirements and standards for building kinetic models of metabolic phenotypes. Curr Opin Biotechnol 2015; 36:146-53. [PMID: 26342586 DOI: 10.1016/j.copbio.2015.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
The overarching ambition of kinetic metabolic modeling is to capture the dynamic behavior of metabolism to such an extent that systems and synthetic biology strategies can reliably be tested in silico. The lack of kinetic data hampers the development of kinetic models, and most of the current models use ad hoc reduced stoichiometry or oversimplified kinetic rate expressions, which may limit their predictive strength. There is a need to introduce the community-level standards that will organize and accelerate the future developments in this area. We introduce here a set of requirements that will ensure the model quality, we examine the current kinetic models with respect to these requirements, and we propose a general workflow for constructing models that satisfy these requirements.
Collapse
|
29
|
Improving prediction fidelity of cellular metabolism with kinetic descriptions. Curr Opin Biotechnol 2015; 36:57-64. [PMID: 26318076 DOI: 10.1016/j.copbio.2015.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/13/2022]
Abstract
Several modeling frameworks for describing and redirecting cellular metabolism have been developed keeping pace with the rapid development in high-throughput data generation and advances in metabolic engineering techniques. The incorporation of kinetic information within stoichiometry-only modeling techniques offers potential advantages for improved phenotype prediction and consequently more precise computational strain design. In addition to substrate-level kinetic regulatory information, the integration of a number of additional layers of regulation at the transcription, translation, and post-translation levels is sought after by many research groups. However, the practical integration of these complex biological processes into a unified framework amenable to design remains an ongoing challenge.
Collapse
|
30
|
Metabolic engineering for the high-yield production of isoprenoid-based C₅ alcohols in E. coli. Sci Rep 2015; 5:11128. [PMID: 26052683 PMCID: PMC4459108 DOI: 10.1038/srep11128] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
Branched five carbon (C5) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulation by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Finally, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol.
Collapse
|