1
|
Rodrigues PHF, Silva EGDA, Borges AS, Castiglioni GL, Suarez CAG, Montano IDC. Bioethanol production by immobilized co-culture of Saccharomyces cerevisiae and Scheffersomyces stipitis in a novel continuous 3D printing microbioreactor. AN ACAD BRAS CIENC 2024; 96:e20230633. [PMID: 39319832 DOI: 10.1590/0001-3765202420230633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/26/2024] [Indexed: 09/26/2024] Open
Abstract
Biorefineries require low-cost production processes, low waste generation and equipment that can be used not only for a single process, but for the manufacture of several products. In this context, in this research a continuous 3D printing microbioreactor coupled to an Arduino-controlled automatic feeding system was developed for the intensification of the ethanol production process from xylose/xylulose (3:1), using a new biocatalyst containing the co-culture of Scheffersomyces stipitis and Saccharomyces cerevisiae (50/50). Initially, batch fermentations of monocultures of S. cerevisiae and S. stipitis and co-culture were carried out. Subsequently, the immobilized co-culture was used as a biocatalyst in continuous fermentations using the developed microreactor. Fermentations carried out in the microbioreactor presented a 2-fold increase in the ethanol concentration and a 3-fold increase in productivity when compared to monocultures. The microbioreactor developed proved to be efficient and can be extended for other bioproducts production. This approach proved to be a promising alternative for the use of the hemicellulose fraction of biomasses without the need to use modified strains.
Collapse
Affiliation(s)
- Pedro Henrique F Rodrigues
- Universidade Federal de Goiás, Instituto de Química, Av. Esperança, s/n, Chácaras de Recreio Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Elizabeth G DA Silva
- Universidade Federal de Goiás, Instituto de Química, Av. Esperança, s/n, Chácaras de Recreio Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Alex S Borges
- Universidade Federal de Goiás, Instituto de Química, Av. Esperança, s/n, Chácaras de Recreio Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Gabriel Luis Castiglioni
- Universidade Federal de Goiás, Departamento de Engenharia de Alimentos, Av. Esperança, s/n, Chácaras de Recreio Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Carlos Alberto G Suarez
- Universidade Federal de Goiás, Instituto de Química, Av. Esperança, s/n, Chácaras de Recreio Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Inti Doraci C Montano
- Universidade Federal de Goiás, Instituto de Química, Av. Esperança, s/n, Chácaras de Recreio Samambaia, 74690-900 Goiânia, GO, Brazil
| |
Collapse
|
2
|
Bolzico BC, Racca S, Khawam JN, Leonardi RJ, Tomassi AH, Benzzo MT, Comelli RN. Exploring xylose metabolism in non-conventional yeasts: kinetic characterization and product accumulation under different aeration conditions. J Ind Microbiol Biotechnol 2024; 51:kuae023. [PMID: 38936832 PMCID: PMC11247345 DOI: 10.1093/jimb/kuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
d-Xylose is a metabolizable carbon source for several non-Saccharomyces species, but not for native strains of S. cerevisiae. For the potential application of xylose-assimilating yeasts in biotechnological processes, a deeper understanding of pentose catabolism is needed. This work aimed to investigate the traits behind xylose utilization in diverse yeast species. The performance of 9 selected xylose-metabolizing yeast strains was evaluated and compared across 3 oxygenation conditions. Oxygenation diversely impacted growth, xylose consumption, and product accumulation. Xylose utilization by ethanol-producing species such as Spathaspora passalidarum and Scheffersomyces stipitis was less affected by oxygen restriction compared with other xylitol-accumulating species such as Meyerozyma guilliermondii, Naganishia liquefaciens, and Yamadazyma sp., for which increased aeration stimulated xylose assimilation considerably. Spathaspora passalidarum exhibited superior conversion of xylose to ethanol and showed the fastest growth and xylose consumption in all 3 conditions. By performing assays under identical conditions for all selected yeasts, we minimize bias in comparisons, providing valuable insight into xylose metabolism and facilitating the development of robust bioprocesses. ONE-SENTENCE SUMMARY This work aims to expand the knowledge of xylose utilization in different yeast species, with a focus on how oxygenation impacts xylose assimilation.
Collapse
Affiliation(s)
- Bruna C Bolzico
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
| | - Sofia Racca
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
| | - Jorge N Khawam
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
| | - Rodrigo J Leonardi
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
| | - Ariel H Tomassi
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
| | - Maria T Benzzo
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
| | - Raul N Comelli
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, CC 242 Paraje El Pozo, Santa Fe 3000, Argentina
| |
Collapse
|
3
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
4
|
Palladino F, Rodrigues RCLB, da Silva SP, Rosa CA. Strategy to reduce acetic acid in sugarcane bagasse hemicellulose hydrolysate concomitantly with xylitol production by the promising yeast Cyberlindnera xylosilytica in a bioreactor. Biotechnol Lett 2023; 45:263-272. [PMID: 36586052 DOI: 10.1007/s10529-022-03337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 01/01/2023]
Abstract
The yeast Cyberlindnera xylosilytica UFMG-CM-Y309 has been identified as a promising new xylitol producer from sugarcane bagasse hemicellulosic hydrolysate (SCHH). However, SCHH pretreatment process generates byproducts, which are toxic to cell metabolism, including furans, phenolic compounds, and carboxylic acids, such as acetic acid, typically released at high concentrations. This research aims to reduce acetic acid in sugarcane hemicellulose hydrolysate concomitantly with xylitol production by yeast strain Cy. xylosilytica UFMG-CM-Y309 in a bioreactor by strategically evaluating the influence of volumetric oxygen transfer coefficient (kLa) (21 and 35 h-1). Experiments were conducted on a bench bioreactor (2 L volumetric capacity) at different initial kLa values (21 and 35 h-1). SCHH medium was supplemented with rice bran extract (10 g L-1) and yeast extract (1 g L-1). Cy. xylosilytica showed high xylitol production performance (19.56 g L-1), xylitol yield (0.56 g g-1) and, maximum xylitol-specific production rate (μpmáx 0.20 gxylitol·g-1 h-1) at kLa value of 21 h-1, concomitantly slowing the rate of acetic acid consumption. A faster acetic acid consumption (100%) by Cy. xylosilytica was observed at kLa of 35 h-1, concomitantly with an increase in maximum cellular growth (14.60 g L-1) and reduction in maximum xylitol production (14.56 g L-1 and Yp/s 0.34 g g-1). This study contributes to pioneering research regarding this yeast performance in bioreactors, emphasizing culture medium detoxification and xylitol production.
Collapse
Affiliation(s)
- Fernanda Palladino
- Microbiology Department, Biological Sciences Institute, Minas Gerais Federal University, Belo Horizonte, MG, 31270-901, Brazil.
| | - Rita C L B Rodrigues
- Biotechnology Department, Lorena Engineering School, São Paulo University, Lorena, SP, 12602-810, Brazil
| | - Sinval Pedroso da Silva
- Mechanical Department, Minas Gerais Federal Institute of Education, Science, and Technology (IFMG), Belo Horizonte, MG, 36415-000, Brazil
| | - Carlos A Rosa
- Microbiology Department, Biological Sciences Institute, Minas Gerais Federal University, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
5
|
Identification of traits to improve co-assimilation of glucose and xylose by adaptive evolution of Spathaspora passalidarum and Scheffersomyces stipitis yeasts. Appl Microbiol Biotechnol 2023; 107:1143-1157. [PMID: 36625916 DOI: 10.1007/s00253-023-12362-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Lignocellulosic biomass is a renewable raw material for producing several high-value-added chemicals and fuels. In general, xylose and glucose are the major sugars in biomass hydrolysates, and their efficient utilization by microorganisms is critical for an economical production process. Yeasts capable of co-consuming mixed sugars might lead to higher yields and productivities in industrial fermentation processes. Herein, we performed adaptive evolution assays with two xylose-fermenting yeasts, Spathaspora passalidarum and Scheffersomyces stipitis, to obtain derived clones with improved capabilities of glucose and xylose co-consumption. Adapted strains were obtained after successive growth selection using xylose and the non-metabolized glucose analog 2-deoxy-D-glucose as a selective pressure. The co-fermentation capacity of evolved and parental strains was evaluated on xylose-glucose mixtures. Our results revealed an improved co-assimilation capability by the evolved strains; however, xylose and glucose consumption were observed at slower rates than the parental yeasts. Genome resequencing of the evolved strains revealed genes affected by non-synonymous variants that might be involved with the co-consumption phenotype, including the HXT2.4 gene that encodes a putative glucose transporter in Sp. passalidarum. Expression of this mutant HXT2.4 in Saccharomyces cerevisiae improved the cells' co-assimilation of glucose and xylose. Therefore, our results demonstrated the successful improvement of co-fermentation through evolutionary engineering and the identification of potential targets for further genetic engineering of different yeast strains. KEY POINTS: • Laboratory evolution assay was used to obtain improved sugar co-consumption of non-Saccharomyces strains. • Evolved Sp. passalidarum and Sc. stipitis were able to more efficiently co-ferment glucose and xylose. • A mutant Hxt2.4 permease, which co-transports xylose and glucose, was identified.
Collapse
|
6
|
Alonso-Riaño P, Illera AE, Amândio MS, Xavier AM, Beltrán S, Teresa Sanz M. Valorization of brewer’s spent grain by furfural recovery/removal from subcritical water hydrolysates by pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Mastella L, Senatore VG, Guzzetti L, Coppolino M, Campone L, Labra M, Beltrani T, Branduardi P. First report on Vitamin B9 production including quantitative analysis of its vitamers in the yeast Scheffersomyces stipitis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:98. [PMID: 36123695 PMCID: PMC9487109 DOI: 10.1186/s13068-022-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The demand for naturally derived products is continuously growing. Nutraceuticals such as pre- and post-biotics, antioxidants and vitamins are prominent examples in this scenario, but many of them are mainly produced by chemical synthesis. The global folate market is expected to register a CAGR of 5.3% from 2019 to 2024 and reach USD 1.02 billion by the end of 2024. Vitamin B9, commonly known as folate, is an essential micronutrient for humans. Acting as a cofactor in one-carbon transfer reactions, it is involved in many biochemical pathways, among which the synthesis of nucleotides and amino acids. In addition to plants, many microorganisms can naturally produce it, and this can pave the way for establishing production processes. In this work, we explored the use of Scheffersomyces stipitis for the production of natural vitamin B9 by microbial fermentation as a sustainable alternative to chemical synthesis.
Results
Glucose and xylose are the main sugars released during the pretreatment and hydrolysis processes of several residual lignocellulosic biomasses (such as corn stover, wheat straw or bagasse). We optimized the growth conditions in minimal medium formulated with these sugars and investigated the key role of oxygenation and nitrogen source on folate production. Vitamin B9 production was first assessed in shake flasks and then in bioreactor, obtaining a folate production up to 3.7 ± 0.07 mg/L, which to date is the highest found in literature when considering wild type microorganisms. Moreover, the production of folate was almost entirely shifted toward reduced vitamers, which are those metabolically active for humans.
Conclusions
For the first time, the non-Saccharomyces yeast S. stipitis was used to produce folate. The results confirm its potential as a microbial cell factory for folate production, which can be also improved both by genetic engineering strategies and by fine-tuning the fermentation conditions and nutrient requirements.
Collapse
|
8
|
Semkiv MV, Ruchala J, Tsaruk AY, Zazulya AZ, Vasylyshyn RV, Dmytruk OV, Zuo M, Kang Y, Dmytruk KV, Sibirny AA. The role of hexose transporter-like sensor hxs1 and transcription activator involved in carbohydrate sensing azf1 in xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha. Microb Cell Fact 2022; 21:162. [PMID: 35964033 PMCID: PMC9375311 DOI: 10.1186/s12934-022-01889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development. Efficacy of xylose alcoholic fermentation by O. polymorpha was significantly improved by metabolic engineering. Still, genes involved in regulation of xylose fermentation are insufficiently studied. Results We isolated an insertional mutant of O.polymorpha with impaired ethanol production from xylose. The insertion occurred in the gene HXS1 that encodes hexose transporter-like sensor, a close homolog of Saccharomyces cerevisiae sensors Snf3 and Rgt2. The role of this gene in xylose utilization and fermentation was not previously elucidated. We additionally analyzed O.polymorpha strains with the deletion and overexpression of the corresponding gene. Strains with deletion of the HXS1 gene had slower rate of glucose and xylose consumption and produced 4 times less ethanol than the wild-type strain, whereas overexpression of HXS1 led to 10% increase of ethanol production from glucose and more than 2 times increase of ethanol production from xylose. We also constructed strains of O.polymorpha with overexpression of the gene AZF1 homologous to S. cerevisiae AZF1 gene which encodes transcription activator involved in carbohydrate sensing. Such transformants produced 10% more ethanol in glucose medium and 2.4 times more ethanol in xylose medium. Besides, we deleted the AZF1 gene in O. polymorpha. Ethanol accumulation in xylose and glucose media in such deletion strains dropped 1.5 and 1.8 times respectively. Overexpression of the HXS1 and AZF1 genes was also obtained in the advanced ethanol producer from xylose. The corresponding strains were characterized by 20–40% elevated ethanol accumulation in xylose medium. To understand underlying mechanisms of the observed phenotypes, specific enzymatic activities were evaluated in the isolated recombinant strains. Conclusions This paper shows the important role of hexose sensor Hxs1 and transcription factor Azf1 in xylose and glucose alcoholic fermentation in the native xylose-fermenting yeast O. polymorpha and suggests potential importance of the corresponding genes for construction of the advanced ethanol producers from the major sugars of lignocellulose.
Collapse
Affiliation(s)
- Marta V Semkiv
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | - Justyna Ruchala
- University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Aksynia Y Tsaruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | - Anastasiya Z Zazulya
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | | | - Olena V Dmytruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine.,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - MingXing Zuo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, 550014, Guiyang, China
| | - Yingqian Kang
- Department of Microbiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550014, Guiyang, China
| | - Kostyantyn V Dmytruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine.,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine. .,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
9
|
Trichez D, Carneiro CVGC, Braga M, Almeida JRM. Recent progress in the microbial production of xylonic acid. World J Microbiol Biotechnol 2022; 38:127. [PMID: 35668329 DOI: 10.1007/s11274-022-03313-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 01/03/2023]
Abstract
Interest in the production of renewable chemicals from biomass has increased in the past years. Among these chemicals, carboxylic acids represent a significant part of the most desirable bio-based products. Xylonic acid is a five-carbon sugar-acid obtained from xylose oxidation that can be used in several industrial applications, including food, pharmaceutical, and construction industries. So far, the production of xylonic acid has not yet been available at an industrial scale; however, several microbial bio-based production processes are under development. This review summarizes the recent advances in pathway characterization, genetic engineering, and fermentative strategies to improve xylonic acid production by microorganisms from xylose or lignocellulosic hydrolysates. In addition, the strengths of the available microbial strains and processes and the major requirements for achieving biotechnological production of xylonic acid at a commercial scale are discussed. Efficient native and engineered microbial strains have been reported. Xylonic acid titers as high as 586 and 171 g L-1 were obtained from bacterial and yeast strains, respectively, in a laboratory medium. Furthermore, relevant academic and industrial players associated with xylonic acid production will be presented.
Collapse
Affiliation(s)
- Débora Trichez
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil
| | - Clara Vida G C Carneiro
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil.,Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Melissa Braga
- Innovation and Business Office, EMBRAPA Agroenergia, Brasília, Brazil
| | - João Ricardo M Almeida
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil. .,Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil.
| |
Collapse
|
10
|
Lima CS, Neitzel T, Pirolla R, Dos Santos LV, Lenczak JL, Roberto IC, Rocha GJM. Metabolomic profiling of Spathaspora passalidarum fermentations reveals mechanisms that overcome hemicellulose hydrolysate inhibitors. Appl Microbiol Biotechnol 2022; 106:4075-4089. [PMID: 35622124 DOI: 10.1007/s00253-022-11987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms involved in tolerance to inhibitors is the first step in developing robust yeasts for industrial second-generation ethanol (E2G) production. Here, we used ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and MetaboAnalyst 4.0 for analysis of MS data to examine the changes in the metabolic profile of the yeast Spathaspora passalidarum during early fermentation of hemicellulosic hydrolysates containing high or low levels of inhibitors (referred to as control hydrolysate or CH and strategy hydrolysate or SH, respectively). During fermentation of SH, the maximum ethanol production was 16 g L-1 with a yield of 0.28 g g-1 and productivity of 0.22 g L-1 h-1, whereas maximum ethanol production in CH fermentation was 1.74 g L-1 with a yield of 0.11 g g-1 and productivity of 0.01 g L-1 h-1. The high level of inhibitors in CH induced complex physiological and biochemical responses related to stress tolerance in S. passalidarum. This yeast converted compounds with aldehyde groups (hydroxymethylfurfural, furfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) into less toxic compounds, and inhibitors were found to reduce cell viability and ethanol production. Intracellularly, high levels of inhibitors altered the energy homeostasis and redox balance, resulting in lower levels of ATP and NADPH, while that of glycolytic, pentose phosphate, and tricarboxylic acid (TCA) cycle pathways were the most affected, being the catabolism of glucogenic amino acids, the main cellular response to inhibitor-induced stress. This metabolomic investigation reveals interesting targets for metabolic engineering of ethanologenic yeast strains tolerant against multiple inhibitors for E2G production. KEY POINTS: • Inhibitors in the hydrolysates affected the yeast's redox balance and energy status. • Inhibitors altered the glycolytic, pentose phosphate, TCA cycle and amino acid pathways. • S. passalidarum converted aldehyde groups into less toxic compounds.
Collapse
Affiliation(s)
- Cleilton Santos Lima
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil. .,Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.
| | - Thiago Neitzel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.,Program in Bioenergy, Faculty of Food Engineering, State University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Renan Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil
| | - Leandro Vieira Dos Santos
- Senai Innovation Institute for Biotechnology, São Paulo, SP, 01130-000, Brazil.,Genetics and Molecular Biology Graduate Program, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| | - Jaciane Lutz Lenczak
- Department of Chemical Engineering and Food Engineering, University Campus - CTC, Federal University of Santa Catarina (UFSC), R. Do Biotério Central, Córrego Grande, s/n Florianópolis, SC, 88040-900, Brazil
| | - Inês Conceição Roberto
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil
| | - George J M Rocha
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil. .,Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.
| |
Collapse
|
11
|
Polyols Induce the Production of Antifungal Compounds by Lactobacillus plantarum. Curr Microbiol 2022; 79:99. [PMID: 35150334 DOI: 10.1007/s00284-022-02761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
Mycotoxins may be present in nuts, coffee, cereals, and grapes, among other products. Increasing concerns about human health and environmental protection have driven the application of biological control techniques that can inhibit fungal contaminants. In this study, the growth inhibition of the ochratoxigenic fungus Aspergillus carbonarius Ac 162 was evaluated using 5 lactic acid bacteria (LAB). The LAB studied were Lactobacillus plantarum MZ801739 (J), Lactobacillus plantarum MZ809351 (31) and Lactobacillus plantarum MZ809350 (34), isolated in the Ivory Coast, and Lactobacillus plantarum MN982928 (3) and Leuconostoc citreum MZ801735 (23), isolated in Mexico. J, 31, 34, 3 and 23 are the internal strain codes from our laboratory. LAB were cultivated in De Man, Rogosa and Sharpe (MRS) broth, and different polyols (glycerol, mannitol, sorbitol, and xylitol) were added to the culture broth to stimulate the production of antifungal compounds. The fungal inhibition studies were performed using the poisoned food technique. The highest inhibition of A. carbonarius growth was obtained by cultivating L. plantarum MZ809351 in the presence of xylitol and glycerol. Under these conditions, 1 L of the L. plantarum MZ809351 cultures were used to identify antifungal compounds. The compounds were concentrated by solid-phase extraction and then characterized by GC-MS. In addition to 9-octadecenoic acid, 3 diketopiperazines or cyclic dipeptides were identified, including cyclo (Leu-Leu), cyclo (Pro-Gly) and cyclo (Val-Phe), which were compounds related to microbial antifungal activities. Xylitol and glycerol induced the production of these antifungal compounds against A. carbonarius Ac 162. On the other hand, adding xylitol and glycerol to the MRS broth reduced the Ochratoxin A (OTA) content to 56.8 and 54.7%, respectively. This study shows the potential for using L. plantarum MZ809351 as a biocontrol agent to prevent the growth of A. carbonarius and reduce the production of OTA in foods.
Collapse
|
12
|
Pereira IDO, Dos Santos ÂA, Gonçalves DL, Purificação M, Guimarães NC, Tramontina R, Coutouné N, Zanella E, Matsushika A, Stambuk BU, Ienczak JL. Comparison of Spathaspora passalidarum and recombinant Saccharomyces cerevisiae for integration of first- and second-generation ethanol production. FEMS Yeast Res 2021; 21:6363686. [PMID: 34477865 DOI: 10.1093/femsyr/foab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
First-generation ethanol (E1G) is based on the fermentation of sugars released from saccharine or starch sources, while second-generation ethanol (E2G) is focused on the fermentation of sugars released from lignocellulosic feedstocks. During the fractionation process to release sugars from hemicelluloses (mainly xylose), some inhibitor compounds are released hindering fermentation. Thus, the biggest challenge of using hemicellulosic hydrolysate is selecting strains and processes able to efficiently ferment xylose and tolerate inhibitors. With the aim of diluting inhibitors, sugarcane molasses (80% of sucrose content) can be mixed to hemicellulosic hydrolysate in an integrated E1G-E2G process. Cofermentations of xylose and sucrose were evaluated for the native xylose consumer Spathaspora passalidarum and a recombinant Saccharomyces cerevisiae strain. The industrial S. cerevisiae strain CAT-1 was modified to overexpress the XYL1, XYL2 and XKS1 genes and a mutant ([4-59Δ]HXT1) version of the low-affinity HXT1 permease, generating strain MP-C5H1. Although S. passalidarum showed better results for xylose fermentation, this yeast showed intracellular sucrose hydrolysis and low sucrose consumption in microaerobic conditions. Recombinant S. cerevisiae showed the best performance for cofermentation, and a batch strategy at high cell density in bioreactor achieved unprecedented results of ethanol yield, titer and volumetric productivity in E1G-E2G production process.
Collapse
Affiliation(s)
- Isabela de Oliveira Pereira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ângela Alves Dos Santos
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Davi L Gonçalves
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Marcela Purificação
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Nick Candiotto Guimarães
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Robson Tramontina
- Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP 13083-852, Brazil.,Brazilian Biorenewable Laboratory, National Center for Research in Energy and Materials, Campinas, SP 13083-100, Brazil
| | - Natalia Coutouné
- Brazilian Biorenewable Laboratory, National Center for Research in Energy and Materials, Campinas, SP 13083-100, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP 13083-852, Brazil
| | - Eduardo Zanella
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Akinori Matsushika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-Hiroshima, Hiroshima 739-0046, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Boris U Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Jaciane Lutz Ienczak
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
13
|
Influence of glucose on xylose metabolization by Spathaspora passalidarum. Fungal Genet Biol 2021; 157:103624. [PMID: 34536506 DOI: 10.1016/j.fgb.2021.103624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The yeast Spathaspora passalidarum is able to produce ethanol from D-xylose and D-glucose. However, it is not clear how xylose metabolism is affected by D-glucose when both sugars are available in the culture medium. The aims of this work were to evaluate the influence of D-glucose on D-xylose consumption, ethanol production, gene expression, and the activity of key xylose-metabolism enzymes under both aerobic and oxygen-limited conditions. Ethanol yields and productivities were increased in culture media containing D-xylose as the sole carbon source or a mixture of D-xylose and D-glucose. S. passalidarum preferentially consumed D-glucose in the co-fermentations, which is consistent with the reduction in expression of genes encoding the key xylose-metabolism enzymes. In the presence of D-glucose, the specific activities of xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) were lower. Interestingly, in accordance with other studies, the presence of 2-deoxyglucose (2DG) did not inhibit the growth of S. passalidarum in culture medium containing D-xylose as the sole carbon source. This indicates that a non-canonical repression pathway is acting in S. passalidarum. In conclusion, the results suggest that D-glucose inhibits D-xylose consumption and prevents the D-xylose-mediated induction of the genes encoding XR, XDH, and XK.
Collapse
|
14
|
Rajeswari G, Jacob S, Chandel AK, Kumar V. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Microb Cell Fact 2021; 20:107. [PMID: 34044834 PMCID: PMC8161579 DOI: 10.1186/s12934-021-01597-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Uprising fossil fuel depletion and deterioration of ecological reserves supply have led to the search for alternative renewable and sustainable energy sources and chemicals. Although first generation biorefinery is quite successful commercially in generating bulk of biofuels globally, the food versus fuel debate has necessitated the use of non-edible feedstocks, majorly waste biomass, for second generation production of biofuels and chemicals. A diverse class of microbes and enzymes are being exploited for biofuels production for a series of treatment process, however, the conversion efficiency of wide range of lignocellulosic biomass (LCB) and consolidated way of processing remains challenging. There were lot of research efforts in the past decade to scour for potential microbial candidate. In this context, evolution has developed the gut microbiota of several insects and ruminants that are potential LCB degraders host eco-system to overcome its host nutritional constraints, where LCB processed by microbiomes pretends to be a promising candidate. Synergistic microbial symbionts could make a significant contribution towards recycling the renewable carbon from distinctly abundant recalcitrant LCB. Several studies have assessed the bioprospection of innumerable gut symbionts and their lignocellulolytic enzymes for LCB degradation. Though, some reviews exist on molecular characterization of gut microbes, but none of them has enlightened the microbial community design coupled with various LCB valorization which intensifies the microbial diversity in biofuels application. This review provides a deep insight into the significant breakthroughs attained in enrichment strategy of gut microbial community and its molecular characterization techniques which aids in understanding the holistic microbial community dynamics. Special emphasis is placed on gut microbial role in LCB depolymerization strategies to lignocellulolytic enzymes production and its functional metagenomic data mining eventually generating the sugar platform for biofuels and renewable chemicals production.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India.
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, 12.602.810, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
15
|
Cellulosic Bioethanol from Industrial Eucalyptus globulus Bark Residues Using Kraft Pulping as a Pretreatment. ENERGIES 2021. [DOI: 10.3390/en14082185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pulp and paper industry faces an emerging challenge for valorising wastes and side-streams generated according to the biorefinery concept. Eucalyptus globulus bark, an abundant industrial residue in the Portuguese pulp and paper sector, has a high potential to be converted into biobased products instead of being burned. This work aimed to evaluate the ethanol production from E. globulus bark previously submitted to kraft pulping through separate hydrolysis and fermentation (SHF) configuration. Fed-batch enzymatic hydrolysis provided a concentrated hydrolysate with 161.6 g·L−1 of cellulosic sugars. S. cerevisiae and Ethanol Red® strains demonstrated a very good fermentation performance, despite a negligible xylose consumption. S. passalidarum, a yeast known for its capability to consume pentoses, was studied in a simultaneous co-culture with Ethanol Red®. However, bioethanol production was not improved. The best fermentation performance was achieved by Ethanol Red®, which provided a maximum ethanol concentration near 50 g·L−1 and fermentation efficiency of 80%. Concluding, kraft pulp from E. globulus bark showed a high potential to be converted into cellulosic bioethanol, being susceptible to implementing an integrated biorefinery on the pulp and paper industrial plants.
Collapse
|
16
|
Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors. Braz J Microbiol 2021; 52:575-586. [PMID: 33825150 DOI: 10.1007/s42770-021-00489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
Lignocellulosic hydrolysates will also contain compounds that inhibit microbial metabolism, such as organic acids, furaldehydes, and phenolic compounds. Understanding the response of yeasts toward such inhibitors is important to the development of different bioprocesses. In this work, the growth capacity of 7 industrial Saccharomyces cerevisiae and 7 non-Saccharomyces yeasts was compared in the presence of 3 different concentrations of furaldehydes (furfural and 5-hydroxymetil-furfural), organic acids (acetic and formic acids), and phenolic compounds (vanillin, syringaldehyde, ferulic, and coumaric acids). Then, Candida tropicalis JA2, Meyerozyma caribbica JA9, Wickerhamomyces anomalus 740, S. cerevisiae JP1, B1.1, and G06 were selected for fermentation in presence of acetic acid, HMF, and vanillin because they proved to be most tolerant to the tested compounds, while Spathaspora sp. JA1 because its xylose consumption rate. The results obtained showed a dose-dependent response of the yeasts toward the eight different inhibitors. Among the compared yeasts, S. cerevisiae strains presented higher tolerance than non-Saccharomyces, 3 of them with the highest tolerance among all. Regarding the non-Saccharomyces yeasts, C. tropicalis JA2 and W. anomalus 740 appeared as the most tolerant, whereas Spathaspora strains appeared very sensitive to the different compounds.
Collapse
|
17
|
Enhanced Tolerance of Spathaspora passalidarum to Sugarcane Bagasse Hydrolysate for Ethanol Production from Xylose. Appl Biochem Biotechnol 2021; 193:2182-2197. [PMID: 33682050 DOI: 10.1007/s12010-021-03544-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
During the pretreatment and hydrolysis of lignocellulosic biomass to obtain a hydrolysate rich in fermentable sugars, furaldehydes (furfural and hydroxymethylfurfural), phenolic compounds, and organic acids are formed and released. These compounds inhibit yeast metabolism, reducing fermentation yields and productivity. This study initially confirmed the ability of Spathaspora passalidarum to ferment xylose and demonstrated its sensibility to the inhibitors present in the hemicellulosic sugarcane bagasse hydrolysate. Then, an adaptive laboratory evolution, with progressive increments of hydrolysate concentration, was employed to select a strain more resistant to hydrolysate inhibitors. Afterward, a central composite design was performed to maximize ethanol production using hydrolysate as substrate. At optimized conditions (initial cell concentration of 30 g/L), S. passalidarum was able to produce 19.4 g/L of ethanol with productivity, yield, and xylose consumption rate of 0.8 g/L.h and 0.4 g/g, respectively, in a sugarcane bagasse hemicellulosic hydrolysate. A kinetic model was developed to describe the inhibition of fermentation by substrate and product. The values obtained for substrate saturation and inhibition constant were Ks = 120.4 g/L and Ki = 1293.4 g/L. Ethanol concentration that stops cell growth was 30.1 g/L. There was an agreement between simulated and experimental results, with a residual standard deviation lower than 6%.
Collapse
|
18
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
19
|
Characterization of two sugar transporters responsible for efficient xylose uptake in an oleaginous yeast Candida tropicalis SY005. Arch Biochem Biophys 2020; 695:108645. [PMID: 33122161 DOI: 10.1016/j.abb.2020.108645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 01/01/2023]
Abstract
Microbial conversion of lignocellulosic feedstock to the target bioproduct requires efficient assimilation of its constituent sugars, a large part of which comprises of glucose and xylose. This study aims to identify and characterize sugar transporters capable of xylose uptake in an oleaginous strain of the industrially relevant yeast Candida tropicalis. In silico database mining resulted in two sugar transporter proteins- CtStp1 and CtStp2, containing conserved amino acid residues and motifs that have been previously reported to be involved in xylose transport in other organisms. Several softwares predicted the likelihood of 10-12 transmembrane (TM) helices to be present in both the Stps, while molecular modelling showed 12 TM helices that were organized into a typical structure found in the major facilitator superfamily of transporters. Docking with different sugars also predicted favorable interactions. Heterologous expression in a Saccharomyces cerevisiae strain harboring functional xylose metabolic genes validated the broad substrate specificity of the two Stps. Each transporter supported prominent growth of recombinant S. cerevisiae strains on six sugars including xylose at various concentrations. Expression of CtSTP1 and CtSTP2 along with the xylose metabolic genes in yeast transformants grown in presence of xylose was confirmed by transcript detection. Growth curve and sugar consumption profiles revealed uptake of both glucose and xylose simultaneously by the recombinant yeast strains, though CtStp1 showed relatively less effect of glucose repression in mixed sugars and was a better transporter of xylose than CtStp2. Such glucose-xylose utilizing efficient transporters can be effective tools for developing co-fermenting yeasts through genetic engineering in future, with noteworthy applications in renewable biomass utilization.
Collapse
|
20
|
Candida intermedia CBS 141442: A Novel Glucose/Xylose Co-Fermenting Isolate for Lignocellulosic Bioethanol Production. ENERGIES 2020. [DOI: 10.3390/en13205363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study describes the isolation of the novel strain Candida intermedia CBS 141442 and investigates the potential of this microorganism for the conversion of lignocellulosic streams. Different C. intermedia clones were isolated during an adaptive laboratory evolution experiment under the selection pressure of lignocellulosic hydrolysate and in strong competition with industrial, xylose-fermenting Saccharomyces cerevisiae cells. Isolates showed different but stable colony and cell morphologies when growing in a solid agar medium (smooth, intermediate and complex morphology) and liquid medium (unicellular, aggregates and pseudohyphal morphology). Clones of the same morphology showed similar fermentation patterns, and the C. intermedia clone I5 (CBS 141442) was selected for further testing due to its superior capacity for xylose consumption (90% of the initial xylose concentration within 72 h) and the highest ethanol yields (0.25 ± 0.02 g ethanol/g sugars consumed). Compared to the well-known yeast Scheffersomyces stipitis, the selected strain showed slightly higher tolerance to the lignocellulosic-derived inhibitors when fermenting a wheat straw hydrolysate. Furthermore, its higher glucose consumption rates (compared to S. stipitis) and its capacity for glucose and xylose co-fermentation makes C. intermedia CBS 141442 an attractive microorganism for the conversion of lignocellulosic substrates, as demonstrated in simultaneous saccharification and fermentation processes.
Collapse
|
21
|
Miyamoto RY, José AHM, Lopes MM, Rodrigues RC. Effectiveness of Baffled Flasks on the Growth of Scheffersomyces stipitis CBS 6054 Inoculum for Ethanol Production in Corncob Hemicellulosic Hydrolysate. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Renan Y. Miyamoto
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Alvaro H. M. José
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Milena M. Lopes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rita C.L.B. Rodrigues
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
22
|
Biazi L, Martínez-Jimenez F, Bonan C, Soares L, Morais E, Ienczak J, Costa A. A differential evolution approach to estimate parameters in a temperature-dependent kinetic model for second generation ethanol production under high cell density with Spathaspora passalidarum. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess Biosyst Eng 2020; 43:1509-1519. [DOI: 10.1007/s00449-020-02344-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/02/2020] [Indexed: 01/04/2023]
|
24
|
Morais CG, Sena LMF, Lopes MR, Santos ARO, Barros KO, Alves CR, Uetanabaro APT, Lachance MA, Rosa CA. Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate. Fungal Biol 2020; 124:639-647. [PMID: 32540187 DOI: 10.1016/j.funbio.2020.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/23/2023]
Abstract
Yeasts associated with rotting wood from four Atlantic Rain forest sites in Brazil were investigated using a culture medium based on sugarcane bagasse hydrolysate. A total of 330 yeast strains were isolated. Pichia manshurica, Candida pseudolambica, and Wickerhamomyces sp. 3 were the most frequently isolated species. Fourteen novel species were obtained in this study. All isolates were tested for their ability to ferment d-xylose and to produce xylanases. In the fermentation assays using d-xylose (30 g L-1), the main ethanol producers were Scheffersomyces stipitis (14.08 g L-1), Scheffersomyces sp. (7.94 g L-1) and Spathaspora boniae (7.16 g L-1). Sc. stipitis showed the highest ethanol yield (0.42 g g-1) and the highest productivity (0.39 g L-1h-1). The fermentation results using hemicellulosic hydrolysate showed that Sc. stipitis was the best ethanol producer, achieving a yield of 0.32 g g-1, while Sp. boniae and Scheffersomyces sp. were excellent xylitol producers. The best xylanase-producing yeasts at 50 °C belonged to the species Su. xylanicola (0.487 U mg-1) and Saitozyma podzolica (0.384 U mg-1). The results showed that rotting wood collected from the Atlantic Rainforest is a valuable source of yeasts able to grow in sugarcane bagasse hydrolysate, including species with promising biotechnological properties.
Collapse
Affiliation(s)
- Camila G Morais
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Letícia M F Sena
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana R Lopes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camila R Alves
- Programa de Pós-Graduação em Botânica, Laboratório de Micologia, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Ana Paula T Uetanabaro
- Departamento de Ciências Biológicas e Agroindústria, Universidade Estadual Santa Cruz, Ilhéus, BA 45662-900, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
25
|
The Xylose Metabolizing Yeast Spathaspora passalidarum is a Promising Genetic Treasure for Improving Bioethanol Production. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently, the fermentation technology for recycling agriculture waste for generation of alternative renewable biofuels is getting more and more attention because of the environmental merits of biofuels for decreasing the rapid rise of greenhouse gas effects compared to petrochemical, keeping in mind the increase of petrol cost and the exhaustion of limited petroleum resources. One of widely used biofuels is bioethanol, and the use of yeasts for commercial fermentation of cellulosic and hemicellulosic agricultural biomasses is one of the growing biotechnological trends for bioethanol production. Effective fermentation and assimilation of xylose, the major pentose sugar element of plant cell walls and the second most abundant carbohydrate, is a bottleneck step towards a robust biofuel production from agricultural waste materials. Hence, several attempts were implemented to engineer the conventional Saccharomyces cerevisiae yeast to transport and ferment xylose because naturally it does not use xylose, using genetic materials of Pichia stipitis, the pioneer native xylose fermenting yeast. Recently, the nonconventional yeast Spathaspora passalidarum appeared as a founder member of a new small group of yeasts that, like Pichia stipitis, can utilize and ferment xylose. Therefore, the understanding of the molecular mechanisms regulating the xylose assimilation in such pentose fermenting yeasts will enable us to eliminate the obstacles in the biofuels pipeline, and to develop industrial strains by means of genetic engineering to increase the availability of renewable biofuel products from agricultural biomass. In this review, we will highlight the recent advances in the field of native xylose metabolizing yeasts, with special emphasis on S. passalidarum for improving bioethanol production.
Collapse
|
26
|
Bioprospection of Enzymes and Microorganisms in Insects to Improve Second-Generation Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Eliodório KP, Cunha GCDGE, Müller C, Lucaroni AC, Giudici R, Walker GM, Alves SL, Basso TO. Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. ADVANCES IN APPLIED MICROBIOLOGY 2019; 109:61-119. [PMID: 31677647 DOI: 10.1016/bs.aambs.2019.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts have a long-standing relationship with humankind that has widened in recent years to encompass production of diverse foods, beverages, fuels and medicines. Here, key advances in the field of yeast fermentation applied to alcohol production, which represents the predominant product of industrial biotechnology, will be presented. More specifically, we have selected industries focused in producing bioethanol, beer and wine. In these bioprocesses, yeasts from the genus Saccharomyces are still the main players, with Saccharomyces cerevisiae recognized as the preeminent industrial ethanologen. However, the growing demand for new products has opened the door to diverse yeasts, including non-Saccharomyces strains. Furthermore, the development of synthetic media that successfully simulate industrial fermentation medium will be discussed along with a general overview of yeast fermentation modeling.
Collapse
Affiliation(s)
| | | | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Ana Carolina Lucaroni
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Reinaldo Giudici
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | | | - Sérgio Luiz Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Thiago Olitta Basso
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
28
|
Veras HCT, Campos CG, Nascimento IF, Abdelnur PV, Almeida JRM, Parachin NS. Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts. BMC Biotechnol 2019; 19:58. [PMID: 31382948 PMCID: PMC6683545 DOI: 10.1186/s12896-019-0548-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Efficient xylose fermentation still demands knowledge regarding xylose catabolism. In this study, metabolic flux analysis (MFA) and metabolomics were used to improve our understanding of xylose metabolism. Thus, a stoichiometric model was constructed to simulate the intracellular carbon flux and used to validate the metabolome data collected within xylose catabolic pathways of non-Saccharomyces xylose utilizing yeasts. RESULTS A metabolic flux model was constructed using xylose fermentation data from yeasts Scheffersomyces stipitis, Spathaspora arborariae, and Spathaspora passalidarum. In total, 39 intracellular metabolic reactions rates were utilized validating the measurements of 11 intracellular metabolites, acquired by mass spectrometry. Among them, 80% of total metabolites were confirmed with a correlation above 90% when compared to the stoichiometric model. Among the intracellular metabolites, fructose-6-phosphate, glucose-6-phosphate, ribulose-5-phosphate, and malate are validated in the three studied yeasts. However, the metabolites phosphoenolpyruvate and pyruvate could not be confirmed in any yeast. Finally, the three yeasts had the metabolic fluxes from xylose to ethanol compared. Xylose catabolism occurs at twice-higher flux rates in S. stipitis than S. passalidarum and S. arborariae. Besides, S. passalidarum present 1.5 times high flux rate in the xylose reductase reaction NADH-dependent than other two yeasts. CONCLUSIONS This study demonstrated a novel strategy for metabolome data validation and brought insights about naturally xylose-fermenting yeasts. S. stipitis and S. passalidarum showed respectively three and twice higher flux rates of XR with NADH cofactor, reducing the xylitol production when compared to S. arborariae. Besides then, the higher flux rates directed to pentose phosphate pathway (PPP) and glycolysis pathways resulted in better ethanol production in S. stipitis and S. passalidarum when compared to S. arborariae.
Collapse
Affiliation(s)
- Henrique C. T. Veras
- Grupo Engenharia de Biocatalisadores, Universidade de Brasília - UnB , Campus Darcy Ribeiro, Instituto de Ciências Biológicas, Bloco K, 1° andar, Asa Norte, Brasilia, 70.790-900 Brazil
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
| | - Christiane G. Campos
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, Brazil
| | - Igor F. Nascimento
- Programa de Pós-Graduação em Administração, Universidade de Brasília - UnB, Brasília, Brazil
| | - Patrícia V. Abdelnur
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, Brazil
| | - João R. M. Almeida
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Programa de Pós-Graduação em Biologia Microbiana, Instituto de Biologia, Universidade de Brasília - UnB, Brasilia, Brazil
| | - Nádia S. Parachin
- Grupo Engenharia de Biocatalisadores, Universidade de Brasília - UnB , Campus Darcy Ribeiro, Instituto de Ciências Biológicas, Bloco K, 1° andar, Asa Norte, Brasilia, 70.790-900 Brazil
- Programa de Pós-Graduação em Biologia Microbiana, Instituto de Biologia, Universidade de Brasília - UnB, Brasilia, Brazil
| |
Collapse
|
29
|
Farias D, Maugeri Filho F. Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Collograi KC, da Costa AC, Ienczak JL. Effect of contamination with Lactobacillus fermentum I2 on ethanol production by Spathaspora passalidarum. Appl Microbiol Biotechnol 2019; 103:5039-5050. [DOI: 10.1007/s00253-019-09779-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
|
31
|
Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Biotechnol Lett 2019; 41:753-761. [DOI: 10.1007/s10529-019-02674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
|
32
|
Lin Y, Cai Y, Guo Y, Li X, Qi X, Qi Q, Wang Q. Development and genomic elucidation of hybrid yeast with improved glucose-xylose co-fermentation at high temperature. FEMS Yeast Res 2019; 19:5333307. [DOI: 10.1093/femsyr/foz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Enhanced capability of co-fermenting glucose and xylose at high temperature is highly desirable for yeast application in second-generation bioethanol production. Here, we obtained hybrid strains with improved glucose-xylose co-fermentation properties at high temperature by combining genome shuffling and adaptive evolution. Genome resequencing of these strains suggested predominantly inherited genetic information from one parental strain Spathaspora passalidarum SP rather than the other parental strain Saccharomyces cerevisiae ScY01, possibly due to that the CUG codon system of S. passalidarum might have systematically eliminated most of the functional proteins from S. cerevisiae through misfolding. Compared to SP, one-copy loss of a 146-kb fragment was found in the hybrid strain and regained after being evolved for a while, whereas one-copy loss of an 11-kb fragment was only found after being evolved for a longer time. Besides, the genes affected by nonsynonymous variants were also identified, especially the mutation S540F in the endoplasmic reticulum chaperon Kar2. Structural prediction indicated that S540F might change the substrate binding activity of Kar2, and thus play a role in preventing protein aggregation in yeast at high temperature. Our results illustrated genomic alterations during this process and revealed some genomic factors that might be involved to determine yeast thermotolerance.
Collapse
Affiliation(s)
- Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanqing Cai
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yufeng Guo
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xin Li
- Impossible Foods Inc., Redwood City, CA 94063, USA
| | - Xianni Qi
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qi Qi
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
33
|
Moreno AD, Carbone A, Pavone R, Olsson L, Geijer C. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol. Appl Microbiol Biotechnol 2019; 103:1405-1416. [PMID: 30498977 PMCID: PMC6394480 DOI: 10.1007/s00253-018-9528-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 11/17/2018] [Indexed: 01/27/2023]
Abstract
The development of robust microorganisms that can efficiently ferment both glucose and xylose represents one of the major challenges in achieving a cost-effective lignocellulosic bioethanol production. Candida intermedia is a non-conventional, xylose-utilizing yeast species with a high-capacity xylose transport system. The natural ability of C. intermedia to produce ethanol from xylose makes it attractive as a non-GMO alternative for lignocellulosic biomass conversion in biorefineries. We have evaluated the fermentation capacity and the tolerance to lignocellulose-derived inhibitors and the end product, ethanol, of the C. intermedia strain CBS 141442 isolated from steam-exploded wheat straw hydrolysate. In a mixed sugar fermentation medium, C. intermedia CBS 141442 co-fermented glucose and xylose, although with a preference for glucose over xylose. The strain was clearly more sensitive to inhibitors and ethanol when consuming xylose than glucose. C. intermedia CBS 141442 was also subjected to evolutionary engineering with the aim of increasing its tolerance to inhibitors and ethanol, and thus improving its fermentation capacity under harsh conditions. The resulting evolved population was able to ferment a 50% (v/v) steam-exploded wheat straw hydrolysate (which was completely inhibitory to the parental strain), improving the sugar consumption and the final ethanol concentration. The evolved population also exhibited a better tolerance to ethanol when growing in a xylose medium supplemented with 35.5 g/L ethanol. These results highlight the potential of C. intermedia CBS 141442 to become a robust yeast for the conversion of lignocellulose to ethanol.
Collapse
Affiliation(s)
- Antonio D Moreno
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden
- Department of Energy, Biofuels Unit, CIEMAT, Madrid, Spain
| | - Antonella Carbone
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Rosita Pavone
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| | - Cecilia Geijer
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden
| |
Collapse
|
34
|
The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345. Appl Microbiol Biotechnol 2019; 103:2845-2855. [DOI: 10.1007/s00253-019-09625-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/18/2018] [Accepted: 12/16/2018] [Indexed: 11/25/2022]
|
35
|
Gao M, Ploessl D, Shao Z. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Front Microbiol 2019; 9:3264. [PMID: 30723464 PMCID: PMC6349770 DOI: 10.3389/fmicb.2018.03264] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,The Ames Laboratory, Iowa State University, Ames, IA, United States.,The Interdisciplinary Microbiology Program, Biorenewables Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
36
|
Lipid production by Lipomyces starkeyi using sap squeezed from felled old oil palm trunks. J Biosci Bioeng 2019; 127:726-731. [PMID: 30642786 DOI: 10.1016/j.jbiosc.2018.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 12/01/2018] [Indexed: 01/10/2023]
Abstract
The ability of oleaginous yeast Lipomyces starkeyi to efficiently produce lipids when cultivated on sap extracted from felled oil palm trunk (OPT) as a novel inexpensive renewable carbon source was evaluated. OPT sap was found to contain approximately 98 g/L glucose and 32 g/L fructose. Batch fermentations were performed using three different OPT sap medium conditions: regular sap, enriched sap, and enriched sap at pH 5.0. Under all sap medium conditions, the cell biomass and lipid production achieved were approximately 30 g/L and 60% (w/w), respectively. L. starkeyi tolerated acidified medium (initial pH ≈ 3) and produced considerable amounts of ethanol as well as xylitol as by-products. The fatty acid profile of L. starkeyi was remarkably similar to that of palm oil, one of the most common vegetable oil feedstock used in biodiesel production with oleic acid as the major fatty acid followed by palmitic, stearic and linoleic acids.
Collapse
|
37
|
Granados-Arvizu JA, Madrigal-Perez LA, Canizal-García M, González-Hernández JC, García-Almendárez BE, Regalado-González C. Effect of cytochrome bc1 complex inhibition during fermentation and growth ofScheffersomyces stipitisusing glucose, xylose or arabinose as carbon sources. FEMS Yeast Res 2018; 19:5222635. [DOI: 10.1093/femsyr/foy126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- J A Granados-Arvizu
- DIPA, PROPAC. Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas s/n. Col. Las Campanas, C.P. 76010 Querétaro, Qro., México
| | - L A Madrigal-Perez
- Laboratorio de Biotecnología Microbiana del, Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing Carlos Rojas Gutiérrez #2120, 61100 Ciudad Hidalgo, Michoacán, México
| | - M Canizal-García
- Laboratorio de Biotecnología Microbiana del, Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing Carlos Rojas Gutiérrez #2120, 61100 Ciudad Hidalgo, Michoacán, México
| | - J C González-Hernández
- Laboratorio de Bioquímica del, Instituto Tecnológico de Morelia, Av. Tecnológico de Morelia #1500, 58120 Morelia, Michoacán, México
| | - B E García-Almendárez
- DIPA, PROPAC. Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas s/n. Col. Las Campanas, C.P. 76010 Querétaro, Qro., México
| | - C Regalado-González
- DIPA, PROPAC. Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas s/n. Col. Las Campanas, C.P. 76010 Querétaro, Qro., México
| |
Collapse
|
38
|
Two-Stage Aeration Fermentation Strategy to Improve Bioethanol Production by Scheffersomyces stipitis. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4040097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hardwood spent sulfite liquor (HSSL) is a by-product from pulp industry with a high concentration of pentose sugars, besides some hexoses suitable for bioethanol production by Scheffersomyces stipitis. The establishment of optimal aeration process conditions that results in specific microaerophilic conditions required by S. stipitis is the main challenge for ethanol production. The present study aimed to improve the ethanol production from HSSL by S. stipitis through a two-stage aeration fermentation. Experiments with controlled dissolved oxygen tension (DOT) in the first stage and oxygen restriction in the second stage were carried out. The best results were obtained with DOT control at 50% in the first stage, where the increase of oxygen availability provided faster growth and higher biomass yield, and no oxygen supply with an agitation rate of 250 rpm, in the second stage allowed a successful induction of ethanol production. Fermentation using 60% of HSSL (v/v) as substrate for S. stipitis provided a maximum specific growth rate of 0.07 h−1, an ethanol productivity of 0.04 g L h−1 and an ethanol yield of 0.39 g g−1, respectively. This work showed a successful two-stage aeration strategy as a promising aeration alternative for bioethanol production from HSSL by S. stipitis.
Collapse
|
39
|
Nosrati-Ghods N, Harrison STL, Isafiade AJ, Tai SL. Ethanol from Biomass Hydrolysates by Efficient Fermentation of Glucose and Xylose - A Review. CHEMBIOENG REVIEWS 2018. [DOI: 10.1002/cben.201800009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nosaibeh Nosrati-Ghods
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Adeniyi J. Isafiade
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Siew L. Tai
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
40
|
Rodrussamee N, Sattayawat P, Yamada M. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2. BMC Microbiol 2018; 18:73. [PMID: 30005621 PMCID: PMC6043994 DOI: 10.1186/s12866-018-1218-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient bioconversion of lignocellulosic biomass to bioethanol is one of key challenges in the situation of increasing bioethanol demand. The ethanologenic microbes for such conversion are required to possess abilities of utilization of various sugars including xylose and arabinose in lignocellulosic biomass. As required additional characteristics, there are a weak or no glucose repression that allows cells to simultaneously utilize various sugars together with glucose and thermotolerance for fermentation at high temperatures, which has several advantages including reduction of cooling cost. Spathaspora passalidarum ATCC MYA-4345, a type strains, isolated previously have mainly of these abilities or characteristics but its thermotolerance is not so strong and its glucose repression on xylose utilization is revealed. RESULTS Newly isolated S. passalidarum CMUWF1-2 was found to have a high ability to produce ethanol from various sugars included in lignocellulosic biomass at high temperatures. The strain achieved ethanol yields of 0.43 g, 0.40 g and 0.20 g ethanol/g xylose at 30 °C, 37 °C and 40 °C, respectively. Interestingly, no significant glucose repression was observed in experiments with mixed sugars, being consistent with the strong resistance to 2-deoxyglucose, and antimycin A showed no effect on its growth in xylose medium. Moreover, the strain was tolerant to glucose and ethanol at concentrations up to 35.0% (w/v) and 8.0% (v/v), respectively. CONCLUSIONS S. passalidarum CMUWF1-2 was shown to achieve efficient production of ethanol from various sugars and a high ethanol yield from xylose with little accumulation of xylitol. The strain also exhibited stress-resistance including thermotolerance and no detectable glucose repression as beneficial characteristics. Therefore, S. passalidarum CMUWF1-2 has remarkable potential for conversion of lignocellulosic biomass to bioethanol.
Collapse
Affiliation(s)
- Nadchanok Rodrussamee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mamoru Yamada
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, 755-8505, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8315, Japan
| |
Collapse
|
41
|
Su YK, Willis LB, Rehmann L, Smith DR, Jeffries TW. Spathaspora passalidarum selected for resistance to AFEX hydrolysate shows decreased cell yield. FEMS Yeast Res 2018; 18:5042277. [DOI: 10.1093/femsyr/foy011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yi-Kai Su
- Department of Biological Systems Engineering, University of Wisconsin, Madison, WI 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 3K, Canada
| | - Laura B Willis
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Bacteriology, University of Madison, WI, 53705, USA
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 3K, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Thomas W Jeffries
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Bacteriology, University of Madison, WI, 53705, USA
| |
Collapse
|
42
|
Guo J, Huang S, Chen Y, Guo X, Xiao D. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans. Microb Cell Fact 2018; 17:64. [PMID: 29712559 PMCID: PMC5925849 DOI: 10.1186/s12934-018-0911-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
Background Aureobasidium pullulans is a yeast-like fungus that can ferment xylose to generate high-value-added products, such as pullulan, heavy oil, and melanin. The combinatorial expression of two xylose reductase (XR) genes and two xylitol dehydrogenase (XDH) genes from Spathaspora passalidarum and the heterologous expression of the Piromyces sp. xylose isomerase (XI) gene were induced in A. pullulans to increase the consumption capability of A. pullulans on xylose. Results The overexpression of XYL1.2 (encoding XR) and XYL2.2 (encoding XDH) was the most beneficial for xylose utilization, resulting in a 17.76% increase in consumed xylose compared with the parent strain, whereas the introduction of the Piromyces sp. XI pathway failed to enhance xylose utilization efficiency. Mutants with superior xylose fermentation performance exhibited increased intracellular reducing equivalents. The fermentation performance of all recombinant strains was not affected when glucose or sucrose was utilized as the carbon source. The strain with overexpression of XYL1.2 and XYL2.2 exhibited excellent fermentation performance with mimicked hydrolysate, and pullulan production increased by 97.72% compared with that of the parent strain. Conclusions The present work indicates that the P4 mutant (using the XR/XDH pathway) with overexpressed XYL1.2 and XYL2.2 exhibited the best xylose fermentation performance. The P4 strain showed the highest intracellular reducing equivalents and XR and XDH activity, with consequently improved pullulan productivity and reduced melanin production. This valuable development in aerobic fermentation by the P4 strain may provide guidance for the biotransformation of xylose to high-value products by A. pullulans through genetic approach. Electronic supplementary material The online version of this article (10.1186/s12934-018-0911-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Siyao Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| |
Collapse
|
43
|
Defosse TA, Le Govic Y, Courdavault V, Clastre M, Vandeputte P, Chabasse D, Bouchara JP, Giglioli-Guivarc'h N, Papon N. [Yeasts from the CTG clade (Candida clade): Biology, impact in human health, and biotechnological applications]. J Mycol Med 2018; 28:257-268. [PMID: 29545121 DOI: 10.1016/j.mycmed.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 11/29/2022]
Abstract
Among the subdivision of Saccharomycotina (ascomycetes budding yeasts), the CTG clade (formerly the Candida clade) includes species that display a particular genetic code. In these yeasts, the CTG codon is predominantly translated as a serine instead of a leucine residue. It is now well-known that some CTG clade species have a major impact on human and its activities. Some of them are recognized as opportunistic agents of fungal infections termed candidiasis. In addition, another series of species belonging to the CTG clade draws the attention of some research groups because they exhibit a strong potential in various areas of biotechnology such as biological control, bioremediation, but also in the production of valuable biocompounds (biofuel, vitamins, sweeteners, industrial enzymes). Here we provide an overview of recent advances concerning the biology, clinical relevance, and currently tested biotechnological applications of species of the CTG clade. Future directions for scientific research on these particular yeasts are also discussed.
Collapse
Affiliation(s)
- T A Defosse
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - Y Le Govic
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - V Courdavault
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - M Clastre
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - P Vandeputte
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - D Chabasse
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - J-P Bouchara
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - N Giglioli-Guivarc'h
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - N Papon
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France.
| |
Collapse
|
44
|
Cadete RM, Rosa CA. The yeasts of the genus Spathaspora
: potential candidates for second-generation biofuel production. Yeast 2017; 35:191-199. [DOI: 10.1002/yea.3279] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/26/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Raquel M. Cadete
- Departamento de Microbiologia, ICB, C.P. 486; Universidade Federal de Minas Gerais; Belo Horizonte MG 31270-901 Brazil
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486; Universidade Federal de Minas Gerais; Belo Horizonte MG 31270-901 Brazil
| |
Collapse
|
45
|
Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microb Cell Fact 2017; 16:153. [PMID: 28903764 PMCID: PMC5598047 DOI: 10.1186/s12934-017-0766-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/07/2017] [Indexed: 12/03/2022] Open
Abstract
Background Understanding the effects of oxygen levels on yeast xylose metabolism would benefit ethanol production. In this work, xylose fermentative capacity of Scheffersomyces stipitis, Spathaspora passalidarum, Spathaspora arborariae and Candida tenuis was systematically compared under aerobic, oxygen-limited and anaerobic conditions. Results Fermentative performances of the four yeasts were greatly influenced by oxygen availability. S. stipitis and S. passalidarum showed the highest ethanol yields (above 0.44 g g−1) under oxygen limitation. However, S. passalidarum produced 1.5 times more ethanol than S. stipitis under anaerobiosis. While C. tenuis showed the lowest xylose consumption rate and incapacity to produce ethanol, S. arborariae showed an intermediate fermentative performance among the yeasts. NAD(P)H xylose reductase (XR) activity in crude cell extracts correlated with xylose consumption rates and ethanol production. Conclusions Overall, the present work demonstrates that the availability of oxygen influences the production of ethanol by yeasts and indicates that the NADH-dependent XR activity is a limiting step on the xylose metabolism. S. stipitis and S. passalidarum have the greatest potential for ethanol production from xylose. Both yeasts showed similar ethanol yields near theoretical under oxygen-limited condition. Besides that, S. passalidarum showed the best xylose consumption and ethanol production under anaerobiosis.
Collapse
|
46
|
Nakanishi SC, Soares LB, Biazi LE, Nascimento VM, Costa AC, Rocha GJM, Ienczak JL. Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate bySpathaspora passalidarumandScheffersomyces stipitis. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26357] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Simone C. Nakanishi
- Departamento de Biotecnologia, Escola de Engenharia de Lorena-USP; Estrada Municipal do Campinho; s/n, Lorena, SP CEP: 12602-810 Lorena SP Brasil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| | - Lauren B. Soares
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| | - Luiz Eduardo Biazi
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
- Faculdade de Engenharia Química, UNICAMP; Cidade Universitária Zeferino Vaz Av. Albert Einstein; Campinas SP Brasil
| | - Viviane M. Nascimento
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| | - Aline C. Costa
- Faculdade de Engenharia Química, UNICAMP; Cidade Universitária Zeferino Vaz Av. Albert Einstein; Campinas SP Brasil
| | - George Jackson M. Rocha
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| | - Jaciane L. Ienczak
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| |
Collapse
|
47
|
Acevedo A, Conejeros R, Aroca G. Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis. PLoS One 2017; 12:e0180074. [PMID: 28658270 PMCID: PMC5489217 DOI: 10.1371/journal.pone.0180074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/11/2017] [Indexed: 11/18/2022] Open
Abstract
The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC.
Collapse
Affiliation(s)
- Alejandro Acevedo
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
- * E-mail:
| | - Germán Aroca
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| |
Collapse
|
48
|
Lopes MR, Morais CG, Kominek J, Cadete RM, Soares MA, Uetanabaro APT, Fonseca C, Lachance MA, Hittinger CT, Rosa CA. Genomic analysis and D-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae f. a., sp. nov. and Spathaspora gorwiae f. a., sp. nov. FEMS Yeast Res 2016; 16:fow044. [PMID: 27188884 DOI: 10.1093/femsyr/fow044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 02/03/2023] Open
Abstract
Three novel D-xylose-fermenting yeast species of Spathaspora clade were recovered from rotting wood in regions of the Atlantic Rainforest ecosystem in Brazil. Differentiation of new species was based on analyses of the gene encoding the D1/D2 sequences of large subunit of rRNA and on 642 conserved, single-copy, orthologous genes from genome sequence assemblies from the newly described species and 15 closely-related Debaryomycetaceae/Metschnikowiaceae species. Spathaspora girioi sp. nov. produced unconjugated asci with a single elongated ascospore with curved ends; ascospore formation was not observed for the other two species. The three novel species ferment D-xylose with different efficiencies. Spathaspora hagerdaliae sp. nov. and Sp. girioi sp. nov. showed xylose reductase (XR) activity strictly dependent on NADPH, whereas Sp. gorwiae sp. nov. had XR activity that used both NADH and NADPH as co-factors. The genes that encode enzymes involved in D-xylose metabolism (XR, xylitol dehydrogenase and xylulokinase) were also identified for these novel species. The type strains are Sp. girioi sp. nov. UFMG-CM-Y302(T) (=CBS 13476), Sp. hagerdaliae f.a., sp. nov. UFMG-CM-Y303(T) (=CBS 13475) and Sp. gorwiae f.a., sp. nov. UFMG-CM-Y312(T) (=CBS 13472).
Collapse
Affiliation(s)
- Mariana R Lopes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Camila G Morais
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Raquel M Cadete
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Marco A Soares
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ana Paula T Uetanabaro
- Departamento de Ciências Biológicas e Agroindústria, Universidade Estadual Santa Cruz, Ilhéus, BA 45662-900, Brazil
| | - César Fonseca
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen SV, Denmark
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., N6A 5B7, London, Ontario, Canada
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
49
|
Nitiyon S, Keo-Oudone C, Murata M, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M. Efficient conversion of xylose to ethanol by stress-tolerant Kluyveromyces marxianus BUNL-21. SPRINGERPLUS 2016; 5:185. [PMID: 27026881 PMCID: PMC4769242 DOI: 10.1186/s40064-016-1881-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/16/2016] [Indexed: 11/29/2022]
Abstract
The fermentation ability of thermotolerant Kluyveromyces marxianus BUNL-21 isolated in Laos was investigated. Comparison with thermotolerant K. marxianus DMKU3-1042 as one of the most thermotolerant yeasts isolated previously revealed that the strain possesses stronger ability for conversion of xylose to ethanol, resistance to 2-deoxyglucose in the case of pentose, and tolerance to various stresses including high temperature and hydrogen peroxide. K. marxianus BUNL-21 was found to have ethanol fermentation activity from xylose that is slightly lower and much higher than that of Scheffersomyces stipitis (Pichia stipitis) at 30 °C and at higher temperatures, respectively. The lower ethanol production seems to be due to large accumulation of acetic acid. The possible mechanism of acetic acid accumulation is discussed. In addition, it was found that both K. marxianus strains produced ethanol in the presence of 10 mM hydroxymethylfurfural or furfural, at a level almost equivalent to that in their absence. Therefore, K. marxianus BUNL-21 is a highly competent yeast for high-temperature ethanol fermentation with lignocellulosic biomass.
Collapse
Affiliation(s)
- Sukanya Nitiyon
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Chansom Keo-Oudone
- Department of Biology, Faculty of Science, National University of Laos, Vientiane, Lao PDR
| | - Masayuki Murata
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Noppon Lertwattanasakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Tomoyuki Kosaka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Mamoru Yamada
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan ; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515 Japan
| |
Collapse
|
50
|
Calvey CH, Su YK, Willis LB, McGee M, Jeffries TW. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. BIORESOURCE TECHNOLOGY 2016; 200:780-8. [PMID: 26580895 DOI: 10.1016/j.biortech.2015.10.104] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 05/15/2023]
Abstract
Lipid production by oleaginous yeasts is optimal at high carbon-to-nitrogen ratios. In the current study, nitrogen and carbon consumption by Lipomyces starkeyi were directly measured in defined minimal media with nitrogen content and agitation rates as variables. Shake flask cultures with an initial C:N ratio of 72:1 cultivated at 200rpm resulted in a lipid output of 10g/L, content of 55%, yield of 0.170g/g, and productivity of 0.06g/L/h. All of these values decreased by ≈50-60% when the agitation rate was raised to 300rpm or when the C:N ratio was lowered to 24:1, demonstrating the importance of these parameters. Under all conditions, L. starkeyi cultures tolerated acidified media (pH≈2.6) without difficulty, and produced considerable amounts of alcohols; including ethanol, mannitol, arabitol, and 2,3-butanediol. L. starkeyi also produced lipids from a corn stover hydrolysate, showing its potential to produce biofuels from renewable agricultural feedstocks.
Collapse
Affiliation(s)
- Christopher H Calvey
- Department of Bacteriology, University of Wisconsin - Madison, 1531 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, United States; Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI 53726, United States
| | - Yi-Kai Su
- Department of Bacteriology, University of Wisconsin - Madison, 1531 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, United States; Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI 53726, United States
| | - Laura B Willis
- Department of Bacteriology, University of Wisconsin - Madison, 1531 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, United States; Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI 53726, United States; Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States
| | - McSean McGee
- Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI 53726, United States
| | - Thomas W Jeffries
- Department of Bacteriology, University of Wisconsin - Madison, 1531 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, United States; Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI 53726, United States; Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States.
| |
Collapse
|