1
|
Kim GD, Qiu D, Jessen HJ, Mayer A. Metabolic Consequences of Polyphosphate Synthesis and Imminent Phosphate Limitation. mBio 2023; 14:e0010223. [PMID: 37074217 PMCID: PMC10294617 DOI: 10.1128/mbio.00102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
Cells stabilize intracellular inorganic phosphate (Pi) to compromise between large biosynthetic needs and detrimental bioenergetic effects of Pi. Pi homeostasis in eukaryotes uses Syg1/Pho81/Xpr1 (SPX) domains, which are receptors for inositol pyrophosphates. We explored how polymerization and storage of Pi in acidocalcisome-like vacuoles supports Saccharomyces cerevisiae metabolism and how these cells recognize Pi scarcity. Whereas Pi starvation affects numerous metabolic pathways, beginning Pi scarcity affects few metabolites. These include inositol pyrophosphates and ATP, a low-affinity substrate for inositol pyrophosphate-synthesizing kinases. Declining ATP and inositol pyrophosphates may thus be indicators of impending Pi limitation. Actual Pi starvation triggers accumulation of the purine synthesis intermediate 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which activates Pi-dependent transcription factors. Cells lacking inorganic polyphosphate show Pi starvation features already under Pi-replete conditions, suggesting that vacuolar polyphosphate supplies Pi for metabolism even when Pi is abundant. However, polyphosphate deficiency also generates unique metabolic changes that are not observed in starving wild-type cells. Polyphosphate in acidocalcisome-like vacuoles may hence be more than a global phosphate reserve and channel Pi to preferred cellular processes. IMPORTANCE Cells must strike a delicate balance between the high demand of inorganic phosphate (Pi) for synthesizing nucleic acids and phospholipids and its detrimental bioenergetic effects by reducing the free energy of nucleotide hydrolysis. The latter may stall metabolism. Therefore, microorganisms manage the import and export of phosphate, its conversion into osmotically inactive inorganic polyphosphates, and their storage in dedicated organelles (acidocalcisomes). Here, we provide novel insights into metabolic changes that yeast cells may use to signal declining phosphate availability in the cytosol and differentiate it from actual phosphate starvation. We also analyze the role of acidocalcisome-like organelles in phosphate homeostasis. This study uncovers an unexpected role of the polyphosphate pool in these organelles under phosphate-rich conditions, indicating that its metabolic roles go beyond that of a phosphate reserve for surviving starvation.
Collapse
Affiliation(s)
- Geun-Don Kim
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | | | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
2
|
Zhang J, van den Herik BM, Wahl SA. Alpha-ketoglutarate utilization in Saccharomyces cerevisiae: transport, compartmentation and catabolism. Sci Rep 2020; 10:12838. [PMID: 32733060 PMCID: PMC7393084 DOI: 10.1038/s41598-020-69178-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
α-Ketoglutarate (αKG) is a metabolite of the tricarboxylic acid cycle, important for biomass synthesis and a precursor for biotechnological products like 1,4-butanediol. In the eukaryote Saccharomyces cerevisiae αKG is present in different compartments. Compartmentation and (intra-)cellular transport could interfere with heterologous product pathways, generate futile cycles and reduce product yields. Batch and chemostat cultivations at low pH (≤ 5) showed that αKG can be transported, catabolized and used for biomass synthesis. The uptake mechanism of αKG was further investigated under αKG limited chemostat conditions at different pH (3, 4, 5, and 6). At very low pH (3, 4) there is a fraction of undissociated αKG that could diffuse over the periplasmic membrane. At pH 5 this fraction is very low, and the observed growth and residual concentration requires a permease/facilitated uptake mechanism of the mono-dissociated form of αKG. Consumption of αKG under mixed substrate conditions was only observed for low glucose concentrations in chemostat cultivations, suggesting that the putative αKG transporter is repressed by glucose. Fully 13C-labeled αKG was introduced as a tracer during a glucose/αKG co-feeding chemostat to trace αKG transport and utilization. The measured 13C enrichments suggest the major part of the consumed 13C αKG was used for the synthesis of glutamate, and the remainder was transported into the mitochondria and fully oxidized. There was no enrichment observed in glycolytic intermediates, suggesting that there was no gluconeogenic activity under the co-feeding conditions. 13C based flux analysis suggests that the intracellular transport is bi-directional, i.e. there is a fast exchange between the cytosol and mitochondria. The model further estimates that most intracellular αKG (88%) was present in the cytosol. Using literature reported volume fractions, the mitochondria/cytosol concentration ratio was 1.33. Such ratio will not require energy investment for transport towards the mitochondria (based on thermodynamic driving forces calculated with literature pH values). Growth on αKG as sole carbon source was observed, suggesting that S. cerevisiae is not fully Krebs-negative. Using 13C tracing and modelling the intracellular use of αKG under co-feeding conditions showed a link with biomass synthesis, transport into the mitochondria and catabolism. For the engineering of strains that use cytosolic αKG as precursor, both observed sinks should be minimized to increase the putative yields.
Collapse
Affiliation(s)
- Jinrui Zhang
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Bas Mees van den Herik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
3
|
Zhang J, Martinez-Gomez K, Heinzle E, Wahl SA. Metabolic switches from quiescence to growth in synchronized Saccharomyces cerevisiae. Metabolomics 2019; 15:121. [PMID: 31468142 PMCID: PMC6715666 DOI: 10.1007/s11306-019-1584-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The switch from quiescence (G0) into G1 and cell cycle progression critically depends on specific nutrients and metabolic capabilities. Conversely, metabolic networks are regulated by enzyme-metabolite interaction and transcriptional regulation that lead to flux modifications to support cell growth. How cells process and integrate environmental information into coordinated responses is challenging to analyse and not yet described quantitatively. OBJECTIVES To quantitatively monitor the central carbon metabolism during G0 exit and the first 2 h after reentering the cell cycle from synchronized Saccharomyces cerevisiae. METHODS Dynamic tailored 13C metabolic flux analysis was used to observe the intracellular metabolite flux changes, and the metabolome and proteome were observed to identify regulatory mechanisms. RESULTS G0 cells responded immediately to an extracellular increase of glucose. The intracellular metabolic flux changed in time and specific events were observed. High fluxes into trehalose and glycogen synthesis were observed during the G0 exit. Both fluxes then decreased, reaching a minimum at t = 65 min. Here, storage degradation contributed significantly (i.e. 21%) to the glycolytic flux. In contrast to these changes, the glucose uptake rate remained constant after the G0 exit. The flux into the oxidative pentose phosphate pathway was highest (29-fold increase, 36.4% of the glucose uptake) at t = 65 min, while it was very low at other time points. The maximum flux seems to correlate with a late G1 state preparing for the S phase transition. In the G1/S phase (t = 87 min), anaplerotic reactions such as glyoxylate shunt increased. Protein results show that during this transition, proteins belonging to clusters related with ribosome biogenesis and assembly, and initiation transcription factors clusters were continuously synthetised. CONCLUSION The intracellular flux distribution changes dynamically and these major rearrangements highlight the coordinate reorganization of metabolic flux to meet requirements for growth during different cell state.
Collapse
Affiliation(s)
- Jinrui Zhang
- 0000 0001 2097 4740grid.5292.cDepartment of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Karla Martinez-Gomez
- 0000 0001 2167 7588grid.11749.3aBiochemical Engineering, Saarland University, Campus A 1.5, 66123 Saarbrücken, Germany
| | - Elmar Heinzle
- 0000 0001 2167 7588grid.11749.3aBiochemical Engineering, Saarland University, Campus A 1.5, 66123 Saarbrücken, Germany
| | - Sebastian Aljoscha Wahl
- 0000 0001 2097 4740grid.5292.cDepartment of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Xu H, Yang D, Jiang D, Chen HY. Phosphate Assay Kit in One Cell for Electrochemical Detection of Intracellular Phosphate Ions at Single Cells. Front Chem 2019; 7:360. [PMID: 31179270 PMCID: PMC6542946 DOI: 10.3389/fchem.2019.00360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/01/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, phosphate assay kit in one cell is realized for the electrochemical detection of intracellular phosphate ions at single cells. The components of the phosphate assay kit, including maltose phosphorylase, maltose, mutarotase, and glucose oxidase, are electrochemically injected into a living cell through a nanometer-sized capillary with the ring electrode at the tip. These components react with phosphate ions inside the cell to generate hydrogen peroxide that is electrochemically oxidized at the ring electrode for the qualification of intracellular phosphate ions. An average 1.7 nA charge was collected from eight individual cells, suggesting an intracellular phosphate concentration of 2.1 mM. The establishment in the electrochemical measurement of phosphate ions provides a special strategy to monitor the fluctuation of intracellular phosphate at single cells, which is significant for the future investigation of phosphate signal transduction pathway.
Collapse
Affiliation(s)
- Haiyan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Dandan Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Abstract
With the rapid development of DNA synthesis and next-generation sequencing, synthetic biology that aims to standardize, modularize, and innovate cellular functions, has achieved vast progress. Here we review key advances in synthetic biology of the yeast Saccharomyces cerevisiae, which serves as an important eukaryal model organism and widely applied cell factory. This covers the development of new building blocks, i.e., promoters, terminators and enzymes, pathway engineering, tools developments, and gene circuits utilization. We will also summarize impacts of synthetic biology on both basic and applied biology, and end with further directions for advancing synthetic biology in yeast.
Collapse
Affiliation(s)
- Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing Key Laboratory of Bioprocess , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yueping Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing Key Laboratory of Bioprocess , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing Key Laboratory of Bioprocess , Beijing University of Chemical Technology , Beijing 100029 , China.,Department of Biology and Biological Engineering , Chalmers University of Technology , Gothenburg SE41296 , Sweden.,Novo Nordisk Foundation Center for Biosustainability , Technical University of Denmark , Kongens Lyngby DK2800 , Denmark
| |
Collapse
|
6
|
Besada-Lombana PB, McTaggart TL, Da Silva NA. Molecular tools for pathway engineering in Saccharomyces cerevisiae. Curr Opin Biotechnol 2017; 53:39-49. [PMID: 29274630 DOI: 10.1016/j.copbio.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022]
Abstract
Molecular tools for the regulation of protein expression in Saccharomyces cerevisiae have contributed to rapid advances in pathway engineering for this yeast. This review considers new and enhanced additions to this toolbox, focusing on experimental approaches to modulate enzyme synthesis and enzyme fate. Methods for genome engineering, regulation of transcription, post-translational protein localization, and combinatorial screening and sensing in S. cerevisiae are highlighted, and promising new approaches are introduced.
Collapse
Affiliation(s)
- Pamela B Besada-Lombana
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | - Tami L McTaggart
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | - Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.
| |
Collapse
|
7
|
Wahl SA, Bernal Martinez C, Zhao Z, van Gulik WM, Jansen MLA. Intracellular product recycling in high succinic acid producing yeast at low pH. Microb Cell Fact 2017; 16:90. [PMID: 28535757 PMCID: PMC5442661 DOI: 10.1186/s12934-017-0702-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e. the acid is reentering the cell and is again exported or even catabolized. Here, a quantitative approach for the identification of product recycling fluxes is developed. RESULTS The metabolic flux distributions at two time-points of the fermentation process were analyzed. 13C labeled succinic acid was added to the extracellular space and intracellular enrichments were measured and subsequently used for the estimation of metabolic fluxes. The labeling was introduced by a labeling switch experiment, leading to an immediate labeling of about 85% of the acid while keeping the total acid concentration constant. Within 100 s significant labeling enrichment of the TCA cycle intermediates fumarate, iso-citrate and α-ketoglutarate was observed, while no labeling was detected for malate and citrate. These findings suggest that succinic acid is rapidly exchanged over the cellular membrane and enters the oxidative TCA cycle. Remarkably, in the oxidative direction malate 13C enrichment was not detected, indicating that there is no flux going through this metabolite pool. Using flux modeling and thermodynamic assumptions on compartmentation it was concluded that malate must be predominantly cytosolic while fumarate and iso-citrate were more dominant in the mitochondria. CONCLUSIONS Adding labeled product without changing the extracellular environment allowed to quantify intracellular metabolic fluxes under high producing conditions and identify product degradation cycles. In the specific case of succinic acid production, compartmentation was found to play a major role, i.e. the presence of metabolic activity in two different cellular compartments lead to intracellular product degradation reducing the yield. We also observed that the flux from glucose to succinic acid branches at two points in metabolism: (1) At the level of pyruvate, and (2) at cytosolic malate which was not expected.
Collapse
Affiliation(s)
- S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Cristina Bernal Martinez
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Applikon Biotechnology B.V., Heertjeslaan 2, 2629 JG, Delft, The Netherlands
| | - Zheng Zhao
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Walter M van Gulik
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mickel L A Jansen
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| |
Collapse
|
8
|
In Vivo Analysis of NH 4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth. Appl Environ Microbiol 2016; 82:6831-6845. [PMID: 27637876 DOI: 10.1128/aem.01547-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h-1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms.IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally distributed, indicating a high degree of compartmentalization in the vacuole. Additionally, metabolomic analysis results were used to calculate the thermodynamic driving forces in the central N metabolism reactions, revealing that the main reactions in the central N metabolism are far from equilibrium. Using proteomics approaches, we were able to identify major changes, not only in N metabolism, but also in C metabolism and regulation.
Collapse
|
9
|
Current state and challenges for dynamic metabolic modeling. Curr Opin Microbiol 2016; 33:97-104. [PMID: 27472025 DOI: 10.1016/j.mib.2016.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 01/06/2023]
Abstract
While the stoichiometry of metabolism is probably the best studied cellular level, the dynamics in metabolism can still not be well described, predicted and, thus, engineered. Unknowns in the metabolic flux behavior arise from kinetic interactions, especially allosteric control mechanisms. While the stoichiometry of enzymes is preserved in vitro, their activity and kinetic behavior differs from the in vivo situation. Next to this challenge, it is infeasible to test the interaction of each enzyme with each intracellular metabolite in vitro exhaustively. As a consequence, the whole interacting metabolome has to be studied in vivo to identify the relevant enzymes properties. In this review we discuss current approaches for in vivo perturbation experiments, that is, stimulus response experiments using different setups and quantitative analytical approaches, including dynamic carbon tracing. Next to reliable and informative data, advanced modeling approaches and computational tools are required to identify kinetic mechanisms and their parameters.
Collapse
|
10
|
Deng S, Wang CY, Zhang X, Wang Q, Lin L. VdNUC-2, the Key Regulator of Phosphate Responsive Signaling Pathway, Is Required for Verticillium dahliae Infection. PLoS One 2015; 10:e0145190. [PMID: 26670613 PMCID: PMC4682923 DOI: 10.1371/journal.pone.0145190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
In fungal cells, a phosphate (Pi) responsive signaling and metabolism (PHO) pathway regulates Pi-homeostasis. NUC-2/PHO81 and its homologs are one of the most important components in the regulation pathway. In soil-borne phytopathogenic fungus Verticillium dahliae, we identified a Neurospora crassa nuc-2 homolog gene VdNUC-2. VdNUC-2 is composed of 1,018 amino acids, and is highly conserved in tested filamentous fungi. Under conditions of Pi-starvation, compared with the wild-type strain and ectopic complementation strains, the VdNUC-2 knocked out mutants exhibited reduced radial growth, decreased production of conidia and microsclerotia, and were more sensitive to hydrogen peroxide stress. The virulence of VdNUC-2 defective mutants was significantly compromised, and that was unable to be restored by exogenous application of extra Pi. Additionally, the deletion mutants of VdNUC-1, a key transcription factor gene positively controlled by VdNUC-2 in the PHO pathway, showed the similar cultural phenotypes as VdNUC-2 mutants when both of them grew in Pi-limited conditions. However, the virulence of VdNUC-1 mutants was comparable to the wild-type strain. These evidences indicated that the virulence reduction in VdNUC-2 mutants is not due to the interruptions in the PHO pathway or the disturbance of Pi-homeostasis in V. dahliae cytoplasm. VdNUC-2 is not only a crucial gene in the PHO pathway in V. dahliae, but also is required for the full virulence during host-infection.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Cai-yue Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qing Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ling Lin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail:
| |
Collapse
|
11
|
Zhang J, Pierick AT, van Rossum HM, Maleki Seifar R, Ras C, Daran JM, Heijnen JJ, Aljoscha Wahl S. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction. Sci Rep 2015; 5:12846. [PMID: 26243542 PMCID: PMC4525286 DOI: 10.1038/srep12846] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic metabolism is organised in complex networks of enzyme catalysed reactions which are distributed over different organelles. To quantify the compartmentalised reactions, quantitative measurements of relevant physiological variables in different compartments are needed, especially of cofactors. NADP(H) are critical components in cellular redox metabolism. Currently, available metabolite measurement methods allow whole cell measurements. Here a metabolite sensor based on a fast equilibrium reaction is introduced to monitor the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae: NADP + shikimate ⇄ NADPH + H(+) + dehydroshikimate. The cytosolic NADPH/NADP ratio was determined by measuring the shikimate and dehydroshikimate concentrations (by GC-MS/MS). The cytosolic NADPH/NADP ratio was determined under batch and chemostat (aerobic, glucose-limited, D = 0.1 h(-1)) conditions, to be 22.0 ± 2.6 and 15.6 ± 0.6, respectively. These ratios were much higher than the whole cell NADPH/NADP ratio (1.05 ± 0.08). In response to a glucose pulse, the cytosolic NADPH/NADP ratio first increased very rapidly and restored the steady state ratio after 3 minutes. In contrast to this dynamic observation, the whole cell NADPH/NADP ratio remained nearly constant. The novel cytosol NADPH/NADP measurements provide new insights into the thermodynamic driving forces for NADP(H)-dependent reactions, like amino acid synthesis, product pathways like fatty acid production or the mevalonate pathway.
Collapse
Affiliation(s)
- Jinrui Zhang
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Angela ten Pierick
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Harmen M. van Rossum
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Reza Maleki Seifar
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Cor Ras
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Joseph J. Heijnen
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - S. Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| |
Collapse
|
12
|
Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJJ. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Fact 2015; 14:73. [PMID: 26016674 PMCID: PMC4458059 DOI: 10.1186/s12934-015-0252-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/06/2015] [Indexed: 11/30/2022] Open
Abstract
Background L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling. Results Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP+-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1− strain expressing TYRC ARO4FBR and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520 μmol/g DCW or 192 mM in the cytosol, but sustained flux through this pathway was found to depend on the complete elimination of feedback inhibition and degradation pathways. Conclusions Our targeted metabolomics approach confirmed a likely regulatory site at DAHP synthase and identified another possible cofactor limitation at prephenate dehydrogenase. Additionally, the genome-scale metabolic model identified design strategies that have the potential to improve availability of erythrose 4-phosphate for DAHP synthase and cofactor availability for prephenate dehydrogenase. We evaluated these strategies and provide recommendations for further improvement of aromatic amino acid biosynthesis in S. cerevisiae. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0252-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas D Gold
- Department of Biology and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montreal, QC, H4B 1R6, Canada.
| | - Christopher M Gowen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| | - Francois-Xavier Lussier
- Department of Biology and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montreal, QC, H4B 1R6, Canada.
| | - Sarat C Cautha
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| | - Vincent J J Martin
- Department of Biology and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|