1
|
Lyu F, Zhang T, Gui M, Wang Y, Zhao L, Wu X, Rao L, Liao X. The underlying mechanism of bacterial spore germination: An update review. Compr Rev Food Sci Food Saf 2023; 22:2728-2746. [PMID: 37125461 DOI: 10.1111/1541-4337.13160] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023]
Abstract
Bacterial spores are highly resilient and universally present on earth and can irreversibly enter the food chain to cause food spoilage or foodborne illness once revived to resume vegetative growth. Traditionally, extensive thermal processing has been employed to efficiently kill spores; however, the relatively high thermal load adversely affects food quality attributes. In recent years, the germination-inactivation strategy has been developed to mildly kill spores based on the circumstance that germination can decrease spore-resilient properties. However, the failure to induce all spores to geminate, mainly owing to the heterogeneous germination behavior of spores, hampers the success of applying this strategy in the food industry. Undoubtedly, elucidating the detailed germination pathway and underlying mechanism can fill the gap in our understanding of germination heterogeneity, thereby facilitating the development of full-scale germination regimes to mildly kill spores. In this review, we comprehensively discuss the mechanisms of spore germination of Bacillus and Clostridium species, and update the molecular basis of the early germination events, for example, the activation of germination receptors, ion release, Ca-DPA release, and molecular events, combined with the latest research evidence. Moreover, high hydrostatic pressure (HHP), an advanced non-thermal food processing technology, can also trigger spore germination, providing a basis for the application of a germination-inactivation strategy in HHP processing. Here, we also summarize the diverse germination behaviors and mechanisms of spores of Bacillus and Clostridium species under HHP, with the aim of facilitating HHP as a mild processing technology with possible applications in food sterilization. Practical Application: This work provides fundamental basis for developing efficient killing strategies of bacterial spores in food industry.
Collapse
Affiliation(s)
- Fengzhi Lyu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Tianyu Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Meng Gui
- Fisheries Science Institute Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Fu Y, Liang L, Deng S, Wu Y, Yuan Y, Gao M. Novel spore lytic enzyme from a Bacillus phage leading to spore killing. Enzyme Microb Technol 2020; 142:109698. [PMID: 33220860 DOI: 10.1016/j.enzmictec.2020.109698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023]
Abstract
Bacterial spores maintain metabolic dormancy and have high resistance to external pressure. Germination requires degradation of the spore cortex and the participation of germination-specific cortex-lytic enzymes (GSLEs). Previously reported GSLEs have been identified in bacteria and facilitate germination. In this study, we have characterized a novel spore lytic enzyme, Ply67, from Bacillus pumilus phage vB_BpuM_BpSp. Ply67 had a similar cortex-lytic activity to GSLEs but disrupted the inner membranes (IMs) of spores, leading to spore killing rather than germination. The amino acid sequence of the complete protein, Ply67FL, exhibited 40% homology to the GSLE SleB. Domain prediction showed that Ply67FL was composed of three domains: a signal peptide, N-terminal domain protein and C-terminal domain protein. Ply67FL rapidly caused E. coli cells lysis when it was expressed in E. coli. The protein containing the C-terminal domain protein, Ply67C, could kill B. pumilus spores. The protein containing the N-terminal domain protein, Ply67N, could combine with the decoated B. pumilus spores, indicating that N-terminal was the binding domain and C-terminal was the hydrolase domain. The protein lacking the signal peptide but containing the N-terminal and C-terminal domain proteins, Ply67, had activity against spores of various Bacillus species. The surface of spores treated with Ply67 shrank and the permeability barrier was disrupted, and the inner contents leaked out. Immunoelectron microscopic observation showed that Ply67 was mainly acted on the spore cortex. Overall, Ply67 is a novel spore lytic enzyme that differs from other GSLEs not only in amino acid sequence but also in activity against spores, and Ply67 might have the potential to kill spores of pathogenic Bacillus species, e.g., B. cereus and B. anthracis.
Collapse
Affiliation(s)
- Yajuan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Leiqin Liang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Sangsang Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Yan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Yihui Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Meiying Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
3
|
Coullon H, Rifflet A, Wheeler R, Janoir C, Boneca IG, Candela T. N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance. J Biol Chem 2018; 293:18040-18054. [PMID: 30266804 DOI: 10.1074/jbc.ra118.004273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/24/2018] [Indexed: 01/08/2023] Open
Abstract
Spores are produced by many organisms as a survival mechanism activated in response to several environmental stresses. Bacterial spores are multilayered structures, one of which is a peptidoglycan layer called the cortex, containing muramic-δ-lactams that are synthesized by at least two bacterial enzymes, the muramoyl-l-alanine amidase CwlD and the N-deacetylase PdaA. This study focused on the spore cortex of Clostridium difficile, a Gram-positive, toxin-producing anaerobic bacterial pathogen that can colonize the human intestinal tract and is a leading cause of antibiotic-associated diarrhea. Using ultra-HPLC coupled with high-resolution MS, here we found that the spore cortex of the C. difficile 630Δerm strain differs from that of Bacillus subtilis Among these differences, the muramic-δ-lactams represented only 24% in C. difficile, compared with 50% in B. subtilis CD630_14300 and CD630_27190 were identified as genes encoding the C. difficile N-deacetylases PdaA1 and PdaA2, required for muramic-δ-lactam synthesis. In a pdaA1 mutant, only 0.4% of all muropeptides carried a muramic-δ-lactam modification, and muramic-δ-lactams were absent in the cortex of a pdaA1-pdaA2 double mutant. Of note, the pdaA1 mutant exhibited decreased sporulation, altered germination, decreased heat resistance, and delayed virulence in a hamster infection model. These results suggest a much greater role for muramic-δ-lactams in C. difficile than in other bacteria, including B. subtilis In summary, the spore cortex of C. difficile contains lower levels of muramic-δ-lactams than that of B. subtilis, and PdaA1 is the major N-deacetylase for muramic-δ-lactam biosynthesis in C. difficile, contributing to sporulation, heat resistance, and virulence.
Collapse
Affiliation(s)
- Héloise Coullon
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry
| | - Aline Rifflet
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Richard Wheeler
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Claire Janoir
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry
| | - Ivo Gomperts Boneca
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Thomas Candela
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry,.
| |
Collapse
|
4
|
Fiedoruk K, Daniluk T, Mahillon J, Leszczynska K, Swiecicka I. Genetic Environment of cry1 Genes Indicates Their Common Origin. Genome Biol Evol 2018; 9:2265-2275. [PMID: 29617829 PMCID: PMC5604178 DOI: 10.1093/gbe/evx165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Although in Bacillus thuringiensis the cry genes coding for the insecticidal crystal proteins are plasmid-borne and are usually associated with mobile genetic elements, several aspects related to their genomic organization, diversification, and transmission remain to be elucidated. Plasmids of B. thuringiensis and other members of the Bacillus cereus group (n = 364) deposited in GenBank were screened for the presence of cry1 genes, and their genetic environment was analyzed using a comparative bioinformatic approach. The cry1 genes were identified in 27 B. thuringiensis plasmids ranging from 64 to 761 kb, and were predominantly associated with the ori44, ori60, or double orf156/orf157 and pXO1-16/pXO1-14 replication systems. In general, the cry1 genes occur individually or as a part of an insecticidal pathogenicity island (PAI), and are preceded by genes coding for an N-acetylmuramoyl-l-alanine amidase and a putative K+(Na+)/H+ antiporter. However, except in the case of the PAI, the latter gene is disrupted by the insertion of IS231B. Similarly, numerous mobile elements were recognized in the region downstream of cry1, except for cry1I that follows cry1A in the PAI. Therefore, the cassette involving cry1 and these two genes, flanked by transposable elements, named as the cry1 cassette, was the smallest cry1-carrying genetic unit recognized in the plasmids. Conservation of the genomic environment of the cry1 genes carried by various plasmids strongly suggests a common origin, possibly from an insecticidal PAI carried by B. thuringiensis megaplasmids.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Poland
- Corresponding author: E-mail:
| | - Tamara Daniluk
- Department of Microbiology, Medical University of Bialystok, Poland
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Izabela Swiecicka
- Department of Microbiology, University of Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Poland
| |
Collapse
|
5
|
Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, Clarkson S, Koffas MAG. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microb Cell Fact 2018; 17:143. [PMID: 30217197 PMCID: PMC6138892 DOI: 10.1186/s12934-018-0990-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022] Open
Abstract
Background Anthocyanins such as cyanidin 3-O-glucoside (C3G) have wide applications in industry as food colorants. Their current production heavily relies on extraction from plant tissues. Development of a sustainable method to produce anthocyanins is of considerable interest for industrial use. Previously, E. coli-based microbial production of anthocyanins has been investigated extensively. However, safety concerns on E. coli call for the adoption of a safe production host. In the present study, a GRAS bacterium, Corynebacterium glutamicum, was introduced as the host strain to synthesize C3G. We adopted stepwise metabolic engineering strategies to improve the production titer of C3G. Results Anthocyanidin synthase (ANS) from Petunia hybrida and 3-O-glucosyltransferase (3GT) from Arabidopsis thaliana were coexpressed in C. glutamicum ATCC 13032 to drive the conversion from catechin to C3G. Optimized expression of ANS and 3GT improved the C3G titer by 1- to 15-fold. Further process optimization and improvement of UDP-glucose availability led to ~ 40 mg/L C3G production, representing a > 100-fold titer increase compared to production in the un-engineered, un-optimized starting strain. Conclusions For the first time, we successfully achieved the production of the specialty anthocyanin C3G from the comparatively inexpensive flavonoid precursor catechin in C. glutamicum. This study opens up more possibility of C. glutamicum as a host microbe for the biosynthesis of useful and value-added natural compounds. Electronic supplementary material The online version of this article (10.1186/s12934-018-0990-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Zha
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ying Zang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | | | | | - Mamta Gupta
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Environmental Sciences, DAV University, Jalandhar, Punjab, 144 001, India
| | - Xia Wu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
6
|
Abstract
Dormant Bacillales and Clostridiales spores begin to grow when small molecules (germinants) trigger germination, potentially leading to food spoilage or disease. Germination-specific proteins sense germinants, transport small molecules, and hydrolyze specific bonds in cortex peptidoglycan and specific proteins. Major events in germination include (a) germinant sensing; (b) commitment to germinate; (c) release of spores' depot of dipicolinic acid (DPA); (d) hydrolysis of spores' peptidoglycan cortex; and (e) spore core swelling and water uptake, cell wall peptidoglycan remodeling, and restoration of core protein and inner spore membrane lipid mobility. Germination is similar between Bacillales and Clostridiales, but some species differ in how germinants are sensed and how cortex hydrolysis and DPA release are triggered. Despite detailed knowledge of the proteins and signal transduction pathways involved in germination, precisely what some germination proteins do and how they do it remain unclear.
Collapse
Affiliation(s)
- Peter Setlow
- Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305;
| | - Shiwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yong-Qing Li
- Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353;
| |
Collapse
|
7
|
Wu X, Kwon SJ, Kim J, Kane RS, Dordick JS. Biocatalytic Nanocomposites for Combating Bacterial Pathogens. Annu Rev Chem Biomol Eng 2017; 8:87-113. [DOI: 10.1146/annurev-chembioeng-060816-101612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xia Wu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
8
|
Kwon SJ, Kim D, Lee I, Kim J, Dordick JS. In vitro gene expression-coupled bacterial cell chip for screening species-specific antimicrobial enzymes. Biotechnol Bioeng 2017; 114:1648-1657. [PMID: 28369698 DOI: 10.1002/bit.26300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022]
Abstract
Targeting infectious bacterial pathogens is important for reducing the evolution of antibiotic-resistant bacteria and preserving the endogenous human microbiome. Cell lytic enzymes including bacteriophage endolysins, bacterial autolysins, and other bacteriolysins are useful antibiotic alternatives due to their exceptional target selectivity, which may be used to lysins rapidly kill target bacteria and their high specificity permit the normal commensal microflora to be left undisturbed. Genetic information of numerous lysins is currently available, but the identification of their antimicrobial function and specificity has been limited because most lysins are often poorly expressed and exhibit low solubilities. Here, we report the development of bacterial cell chip for rapidly accessing the function of diverse genes that are suggestive of encoding lysins. This approach can be used to evaluate rapidly the species-specific antimicrobial activity of diverse lysins synthesized from in vitro transcription and translation (TNT) of plasmid DNA. In addition, new potent lysins can be assessed that are not expressed in hosts and display low solubility. As a result of evaluating the species-specific antimicrobial function of 11 (un)known lysins with an in vitro TNT-coupled bacterial cell chip, a potent recombinant lysin against Staphylococcus strains, SA1, was identified. The SA1 was highly potent against not only S. aureus, but also both lysostaphin-resistant S. simulans and S. epidermidis cells. To this end, the SA1 may be applicable to treat both methicillin-resistant S. aureus (MRSA) and lysostaphin-resistant MRSA mutants. Biotechnol. Bioeng. 2017;114: 1648-1657. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| | - Domyoung Kim
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| |
Collapse
|