1
|
Lhamo P, Mahanty B. Dynamic Model Selection and Optimal Batch Design for Polyhydroxyalkanoate (PHA) Production by Cupriavidus necator. Appl Biochem Biotechnol 2024; 196:2630-2651. [PMID: 37610515 DOI: 10.1007/s12010-023-04683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Mathematical modelling of microbial polyhydroxyalkanoates (PHAs) production is essential to develop optimal bioprocess design. Though the use of mathematical models in PHA production has increased over the years, the selection of kinetics and model identification strategies from experimental data remains largely heuristic. In this study, PHA production from Cupriavidus necator utilizing sucrose and urea was modelled using a parametric discretization approach. Product formation kinetics and relevant parameters were established from urea-free experimental sets, followed by the selection of growth models from a batch containing both sucrose and urea. Logistic growth and Luedeking-Piret model for PHA production was selected based on regression coefficient (R2: 0.941), adjusted R2 (0.930) and AICc values (-42.764). Model fitness was further assessed through cross-validation, confidence interval and sensitivity analysis of the parameters. Model-based optimal batch startup policy, incorporating multi-objective desirability, suggests an accumulation of 2.030 g l-1 of PHA at the end of 120 h. The modelling framework applied in this study can be used not only to avoid over-parameterization and identifiability issues but can also be adopted to design optimal batch startup policies.
Collapse
Affiliation(s)
- Pema Lhamo
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, 641114, India
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, 641114, India.
| |
Collapse
|
2
|
Wang L, Cui YW. Simultaneous treatment of epichlorohydrin wastewater and polyhydroxyalkanoate recovery by halophilic aerobic granular sludge highly enriched by Halomonas sp. BIORESOURCE TECHNOLOGY 2024; 391:129951. [PMID: 37914058 DOI: 10.1016/j.biortech.2023.129951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The treatment of epichlorohydrin (ECH) wastewater exists chances for achieving cleaner production. This study initially employed moderately halophilic aerobic granular sludge (HAGS) to treat ECH wastewater, and the resulting HAGS was utilized to recover polyhydroxyalkanoate (PHA). During the acclimation process of HAGS, the chemical oxygen demand removal efficiency stabilized at 70 %. Moreover, due to the high enrichment of Halomonas sp. (relative abundance of 86 ± 0.50 %), the maximum PHA content of wasted HAGS was 52.67 wt% in the fermentation process. Simultaneously, the utilization of nuclear magnetic resonance spectroscopy (1H and 13C spectra) and fourier transform infrared spectroscopy for the structural analysis of polymers revealed that polyhydroxybutyrate was the predominant substance extracted from HAGS. In this study, the innovative use of highly enriched HAGS for treating ECH wastewater and simultaneously recovering PHA not only enables the efficient biological treatment of ECH wastewater but also realizes resource recovery of ECH wastewater.
Collapse
Affiliation(s)
- Ling Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Liang B, Zhang X, Wang F, Miao C, Ji Y, Huang Z, Gu P, Liu X, Fan X, Li Q. Production of polyhydroxyalkanoate by mixed cultivation of Brevundimonas diminuta R79 and Pseudomonas balearica R90. Int J Biol Macromol 2023; 234:123667. [PMID: 36796552 DOI: 10.1016/j.ijbiomac.2023.123667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The microflora in the activated sludge of propylene oxide saponification wastewater is characterized by a clear succession after enrichment and domestication, and the specifically enriched strains can significantly increase the yield of polyhydroxyalkanoate. In this study, Pseudomonas balearica R90 and Brevundimonas diminuta R79, which are dominant strain after domestication, were selected as models to examine the interactive mechanisms associated with the synthesis of polyhydroxyalkanoate by co-cultured strains. RNA-Seq analysis revealed the up-regulated expression of the acs and phaA genes of strains R79 and R90 in the co-culture group, which enhanced their utilization of acetic acid and synthesis of poly-β-hydroxybutyrate. Cell dry weight and the yield of poly-β-hydroxybutyrate in the co-culture group were accordingly considerably higher than those in the respective pure culture groups. In addition, two-component system, quorum-sensing, flagellar synthesis-related, and chemotaxis-related genes were enriched in strain R90, thereby indicating that compared with the R79 strain, R90 can adapt more rapidly to a domesticated environment. Expression of the acs gene was higher in R79 than in R90, and consequently, strain R79 could more efficiently assimilate acetate in the domesticated environment, and thus predominated in the culture population at the end of the fermentation period.
Collapse
Affiliation(s)
- Boya Liang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Changfeng Miao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
4
|
Altimari P, Di Caprio F, Brasiello A, Pagnanelli F. Production of microalgae biomass in a two-stage continuous bioreactor: control of microalgae-bacteria competition by spatial uncoupling of nitrogen and organic carbon feeding. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Brison A, Rossi P, Derlon N. Single CSTR can be as effective as an SBR in selecting PHA-storing biomass from municipal wastewater-derived feedstock. WATER RESEARCH X 2023; 18:100165. [PMID: 37250287 PMCID: PMC10214291 DOI: 10.1016/j.wroa.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A key step for the production of polyhydroxyalkanoates (PHAs) from organic waste streams is the selection of a biomass with a high PHA-storage capacity (selection-step), which is usually performed in sequencing batch reactors (SBR). A major advancement would be to perform such selection in continuous reactors to facilitate the full-scale implementation of PHA production from municipal wastewater (MWW)-derived feedstock. The present study therefore investigates to what extent a simple continuous-flow stirred-tank reactor (CSTR) represents a relevant alternative to anSBR. To this end, we operated two selection reactors (CSTR vs. SBR) on filtered primary sludge fermentate while performing a detailed analysis of the microbial communities, and monitoring PHA-storage over long-term (∼150 days) and during accumulation batches. Our study demonstrates that a simple CSTR is as effective as an SBR in selecting biomass with high PHA-storage capacity (up to 0.65 gPHA gVSS-1) while being 50% more efficient in terms of substrate to biomass conversion yields. We also show that such selection can occur on VFA-rich feedstock containing nitrogen (N) and phosphorus (P) in excess, whereas previously, selection of PHA-storing organisms in a single CSTR has only been studied under P limitation. We further found that microbial competition was mostly affected by nutrient availability (N and P) rather than by the reactor operation mode (CSTR vs. SBR). Similar microbial communities therefore developed in both selection reactors, while microbial communities were very different depending on N availability. Rhodobacteraceae gen. were most abundant when growth conditions were stable and N-limited, whereas dynamic N- (and P-) excess conditions favoured the selection of the known PHA-storer Comamonas, and led to the highest observed PHA-storage capacity. Overall, we demonstrate that biomass with high storage capacity can be selected in a simple CSTR on a wider range of feedstock than just P-limited ones.
Collapse
Affiliation(s)
- Antoine Brison
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
6
|
Amer A, Kim Y. Modeling the growth of diverse microorganisms during feast-famine enrichment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10803. [PMID: 36332660 DOI: 10.1002/wer.10803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can decrease the severe environmental pollution of petroleum plastics. PHA production by mixed microbial communities has been extensively studied to lower the high PHA prices. However, the competition between distinct microbial communities during the enrichment of PHA accumulators in mixed cultures has not been widely investigated. Thus, in this work, we developed a mathematical model for the competition between PHA accumulators and non-PHA accumulators in the feast-famine enrichment strategy. The developed model successfully simulated published lab-scale experimental data for Plasticicumulans acidivorans, a well-studied PHA accumulator that can store PHA up to 90% of the cell weight. The growth kinetics for both PHA and non-PHA accumulators were estimated and compared to the values in the literature. The uncertainties in the model kinetics were studied by expanding the model to include additional sub-biomass components for each heterotrophic group. As a result, the microbial diversity of microbial communities was observed to influence the enrichment of PHA accumulators in mixed cultures. Additionally, the calibrated model was applied to investigate the cultivation conditions, such as cycle lengths, carbon-to-nitrogen ratio, and solids retention time for successful P. acidivorans enrichment in mixed cultures. The developed model can be applied to control the cultivation and enrichment of PHA accumulators in large-scale PHA production systems. PRACTITIONER POINTS: A new model for the enrichment of PHA accumulators was developed. The model can simulate PHA accumulation by enriched cultures. The model was calibrated and validated for Plasticicumulans acidivorans. The impact of microbial diversity on enriching PHA accumulators was investigated. Short cycles (<12 h) and SRT (<10 d) are suggested for successful enrichment.
Collapse
Affiliation(s)
- Abdelrahman Amer
- Department of Civil Engineering, McMaster University, Hamilton, Canada
- Civil Engineering Department, Menoufia University, Shebin ElKom, Egypt
| | - Younggy Kim
- Department of Civil Engineering, McMaster University, Hamilton, Canada
| |
Collapse
|
7
|
Varghese S, Dhanraj ND, Rebello S, Sindhu R, Binod P, Pandey A, Jisha MS, Awasthi MK. Leads and hurdles to sustainable microbial bioplastic production. CHEMOSPHERE 2022; 305:135390. [PMID: 35728665 DOI: 10.1016/j.chemosphere.2022.135390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Indiscriminate usage, disposal and recalcitrance of petroleum-based plastics have led to its accumulation leaving a negative impact on the environment. Bioplastics, particularly microbial bioplastics serve as an ecologically sustainable solution to nullify the negative impacts of plastics. Microbial production of biopolymers like Polyhydroxyalkanoates, Polyhydroxybutyrates and Polylactic acid using renewable feedstocks as well as industrial wastes have gained momentum in the recent years. The current study outlays types of bioplastics, their microbial sources and applications in various fields. Scientific evidence on bioplastics has suggested a unique range of applications such as industrial, agricultural and medical applications. Though diverse microorganisms such as Alcaligenes latus, Burkholderia sacchari, Micrococcus species, Lactobacillus pentosus, Bacillus sp., Pseudomonas sp., Klebsiella sp., Rhizobium sp., Enterobacter sp., Escherichia sp., Azototobacter sp., Protomonas sp., Cupriavidus sp., Halomonas sp., Saccharomyces sp., Kluyveromyces sp., and Ralstonia sp. are known to produce bioplastics, the industrial production of bioplastics is still challenging. Thus this paper also provides deep insights on the advancements made to maximise production of bioplastics using different approaches such as metabolic engineering, rDNA technologies and multitude of cultivation strategies. Finally, the constraints to microbial bioplastic production and the future directions of research are briefed. Hence the present review emphasizes on the importance of using bioplastics as a sustainable alternative to petroleum based plastic products to diminish environmental pollution.
Collapse
Affiliation(s)
- Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - N D Dhanraj
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sharrel Rebello
- School of Food Science & Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
8
|
Lhamo P, Mahanty B. Structural Variability, Implementational Irregularities in Mathematical Modelling of Polyhydroxyalkanoates (PHAs) Production– a State of the Art Review. Biotechnol Bioeng 2022; 119:3079-3095. [DOI: 10.1002/bit.28213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and SciencesCoimbatore641114Tamil NaduIndia
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and SciencesCoimbatore641114Tamil NaduIndia
| |
Collapse
|
9
|
Brison A, Rossi P, Derlon N. Influent carbon to phosphorus ratio drives the selection of PHA-storing organisms in a single CSTR. WATER RESEARCH X 2022; 16:100150. [PMID: 35965889 PMCID: PMC9364015 DOI: 10.1016/j.wroa.2022.100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/01/2023]
Abstract
Enriching a biomass with a high fraction of polyhydroxyalkanoate-storing organisms (PHA-storers) represents an essential step in the production of PHAs (bioplastics) from municipal wastewater using mixed microbial cultures. A major challenge is however to create selective growth conditions that are favourable to PHA-storers. Our study thus investigates to what extent the influent COD to phosphorus (COD:P) ratio can be used as a tool for the robust selection of PHA-storers in a single continuous-flow stirred-tank reactor (CSTR). Therefore, we operated five CSTRs in parallel, fed with synthetic wastewater (50% acetate - 50% propionate) with different COD:P ratios (200-1000 gCOD gP-1), and performed a detailed analysis of the microbial communities over long-term (30-70 solid retention times). Our study demonstrates that efficient and robust selection of PHA-storers can be achieved in a single CSTR at high influent COD:P ratios. The selective advantage for PHA-storers increases with the influent COD:P ratio, but only if growth conditions remain limited by both C-substrate and P. In contrast, selection performance deteriorates when COD:P ratios are too high and growth conditions are limited by P only. At an optimal COD:P ratio of 800 gCOD gP-1, a stable microbial community consisting of >90% PHA-storers and dominated by Pannonibacter sp. was selected in the long-term. Finally, our results suggest that high COD:P ratios provide a selective advantage to microorganisms with low cellular P requirements, explaining why different PHA-storers (i.e., Xanthobacter sp. vs. Pannonibacter sp.) were selected depending on the influent COD:P ratio (i.e., 200 vs. 800 gCOD gP-1). Overall, our results provide relevant insights for the development of a new approach for selecting PHA-storers, based on the use of a single CSTR and control of the influent COD:P ratio.
Collapse
Affiliation(s)
- Antoine Brison
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
10
|
Werker A, Lorini L, Villano M, Valentino F, Majone M. Modelling Mixed Microbial Culture Polyhydroxyalkanoate Accumulation Bioprocess towards Novel Methods for Polymer Production Using Dilute Volatile Fatty Acid Rich Feedstocks. Bioengineering (Basel) 2022; 9:bioengineering9030125. [PMID: 35324814 PMCID: PMC8945694 DOI: 10.3390/bioengineering9030125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Volatile fatty acid (VFA) rich streams from fermentation of organic residuals and wastewater are suitable feedstocks for mixed microbial culture (MMC) Polyhydroxyalkanoate (PHA) production. However, many such streams have low total VFA concentration (1–10 gCOD/L). PHA accumulation requires a flow-through bioprocess if the VFAs are not concentrated. A flow through bioprocess must balance goals of productivity (highest possible influent flow rates) with goals of substrate utilization efficiency (lowest possible effluent VFA concentration). Towards these goals, dynamics of upshift and downshift respiration kinetics for laboratory and pilot scale MMCs were evaluated. Monod kinetics described a hysteresis between the upshift and downshift responses. Substrate concentrations necessary to stimulate a given substrate uptake rate were significantly higher than the concentrations necessary to sustain the attained substrate uptake rate. A benefit of this hysteresis was explored in Monte Carlo based PHA accumulation bioprocess numerical simulations. Simulations illustrated for a potential to establish continuous flow-through PHA production bioprocesses even at a low (1 gCOD/L) influent total VFA concentration. Process biomass recirculation into an engineered higher substrate concentration mixing zone, due to the constant influent substrate flow, enabled to drive the process to maximal possible PHA production rates without sacrificing substrate utilization efficiency.
Collapse
Affiliation(s)
- Alan Werker
- Promiko AB, Briggatan 16, 23442 Lomma, Sweden
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.L.); (M.V.); (M.M.)
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.L.); (M.V.); (M.M.)
| | - Francesco Valentino
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30172 Venice, Italy;
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.L.); (M.V.); (M.M.)
| |
Collapse
|
11
|
Di Caprio F. Cultivation processes to select microorganisms with high accumulation ability. Biotechnol Adv 2021; 49:107740. [PMID: 33838283 DOI: 10.1016/j.biotechadv.2021.107740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The microbial ability to accumulate biomolecules is fundamental for different biotechnological applications aiming at the production of biofuels, food and bioplastics. However, high accumulation is a selective advantage only under certain stressful conditions, such as nutrient depletion, characterized by lower growth rate. Conventional bioprocesses maintain an optimal and stable environment for large part of the cultivation, that doesn't reward cells for their accumulation ability, raising the risk of selection of contaminant strains with higher growth rate, but lower accumulation of products. Here in this work the physiological responses of different microorganisms (microalgae, bacteria, yeasts) under N-starvation and energy starvation are reviewed, with the aim to furnish relevant insights exploitable to develop tailored bioprocesses to select specific strains for their higher accumulation ability. Microorganism responses to starvation are reviewed focusing on cell cycle, biomass production and variations in biochemical composition. Then, the work describes different innovative bioprocess configurations exploiting uncoupled nutrient feeding strategies (feast-famine), tailored to maintain a selective pressure to reward the strains with higher accumulation ability in mixed microbial populations. Finally, the main models developed in recent studies to describe and predict microbial growth and intracellular accumulation upon N-starvation and feast-famine conditions have been reviewed.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
12
|
El-malek FA, Khairy H, Farag A, Omar S. The sustainability of microbial bioplastics, production and applications. Int J Biol Macromol 2020; 157:319-328. [DOI: 10.1016/j.ijbiomac.2020.04.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 01/09/2023]
|
13
|
Metabolic modeling of the substrate competition among multiple VFAs for PHA production by mixed microbial cultures. J Biotechnol 2018; 280:62-69. [DOI: 10.1016/j.jbiotec.2018.06.342] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/09/2018] [Accepted: 06/16/2018] [Indexed: 11/18/2022]
|
14
|
Marang L, van Loosdrecht MC, Kleerebezem R. Enrichment of PHA-producing bacteria under continuous substrate supply. N Biotechnol 2018; 41:55-61. [DOI: 10.1016/j.nbt.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/28/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
15
|
Hao J, Wang H, Wang X. Selecting optimal feast-to-famine ratio for a new polyhydroxyalkanoate (PHA) production system fed by valerate-dominant sludge hydrolysate. Appl Microbiol Biotechnol 2018; 102:3133-3143. [DOI: 10.1007/s00253-018-8799-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 10/17/2022]
|
16
|
Korkakaki E, van Loosdrecht MCM, Kleerebezem R. Impact of phosphate limitation on PHA production in a feast-famine process. WATER RESEARCH 2017; 126:472-480. [PMID: 29024909 DOI: 10.1016/j.watres.2017.09.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/27/2017] [Accepted: 09/16/2017] [Indexed: 05/20/2023]
Abstract
Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements.
Collapse
Affiliation(s)
- Emmanouela Korkakaki
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
17
|
Li L, Pagilla KR. Biomass density-function relationships in suspended growth biological processes - A critical review. WATER RESEARCH 2017; 111:274-287. [PMID: 28104515 DOI: 10.1016/j.watres.2017.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/05/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Good settling performance in suspended growth biomass systems, for example in activated sludge (AS) process, leads to efficient wastewater and sludge treatment. Factors that cause the differences in settleablility of AS include the morphology of bacteria, microbial community structure, and the density of bacteria and flocs. Density of AS at three levels, namely, cell, floc, and process, have been discussed here to explain the variations in AS settleability. Dense materials, inside or outside the cell, significantly increase density of AS bacteria or flocs. Functional bacteria, defined as those performing N and P removal and recovery such as phosphate accumulating organisms, nitrifiers, and anammox contain cellular inclusions that increase their density, and consequently a dense and well-settling biomass results at the process level in those systems. A density based selector of AS can be used to enrich functional bacteria in the process through the wasting and sludge age control operations in AS process. This paper critically reviews the latest literature to elucidate mechanisms of density enhancement from cell to process level, and identifies needs/strategies to improve the AS process through a biomass density selector.
Collapse
Affiliation(s)
- Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
18
|
Vadlja D, Koller M, Novak M, Braunegg G, Horvat P. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 2016; 100:10065-10080. [PMID: 27695913 PMCID: PMC5102984 DOI: 10.1007/s00253-016-7844-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/21/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
Statistical distribution of cell and poly[3-(R)-hydroxybutyrate] (PHB) granule size and number of granules per cell are investigated for PHB production in a five-stage cascade (5CSTR). Electron microscopic pictures of cells from individual cascade stages (R1-R5) were converted to binary pictures to visualize footprint areas for polyhydroxyalkanoate (PHA) and non-PHA biomass. Results for each stage were correlated to the corresponding experimentally determined kinetics (specific growth rate μ and specific productivity π). Log-normal distribution describes PHA granule size dissimilarity, whereas for R1 and R4, gamma distribution best reflects the situation. R1, devoted to balanced biomass synthesis, predominately contains cells with rather small granules, whereas with increasing residence time τ, maximum and average granule sizes by trend increase, approaching an upper limit determined by the cell's geometry. Generally, an increase of intracellular PHA content and ratio of granule to cell area slow down along the cascade. Further, the number of granules per cell decreases with increasing τ. Data for μ and π obtained by binary picture analysis correlate well with the experimental results. The work describes long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions, as well as their reflection on the granules size, granule number, and cell structure on the microscopic level.
Collapse
Affiliation(s)
- Denis Vadlja
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/III, 8010, Graz, Austria. .,ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010, Graz, Austria.
| | - Mario Novak
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Gerhart Braunegg
- ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010, Graz, Austria
| | - Predrag Horvat
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| |
Collapse
|
19
|
Liu CC, Zhang LL, An J, Chen B, Yang H. Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms. Lett Appl Microbiol 2015; 62:9-15. [PMID: 26482840 DOI: 10.1111/lam.12511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022]
Affiliation(s)
- C.-C. Liu
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - L.-L. Zhang
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - J. An
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - B. Chen
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - H. Yang
- Translational Medicine Center; Hong-Hui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| |
Collapse
|