1
|
Puja H, Mislin GLA, Rigouin C. Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules 2023; 13:959. [PMID: 37371539 PMCID: PMC10296737 DOI: 10.3390/biom13060959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.
Collapse
Affiliation(s)
- Hélène Puja
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Gaëtan L. A. Mislin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Coraline Rigouin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
2
|
Shi YM, Hirschmann M, Shi YN, Bode HB. Cleavage Off-Loading and Post-assembly-Line Conversions Yield Products with Unusual Termini during Biosynthesis. ACS Chem Biol 2022; 17:2221-2228. [PMID: 35860925 PMCID: PMC9396620 DOI: 10.1021/acschembio.2c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Piscibactins and photoxenobactins are metallophores and
virulence
factors, whose biosynthetic gene cluster, termed pxb, is the most prevalent polyketide synthase/non-ribosomal peptide
synthetase hybrid cluster across entomopathogenic bacteria. They are
structurally similar to yersiniabactin, which contributes to the virulence
of the human pathogen Yersinia pestis. However, the pxb-derived products feature various
chain lengths and unusual carboxamide, thiocarboxylic acid, and dithioperoxoate
termini, which are rarely found in thiotemplated biosyntheses. Here,
we characterize the pxb biosynthetic logic by gene
deletions, site-directed mutagenesis, and isotope labeling experiments.
Notably, we propose that it involves (1) heterocyclization domains
with various catalytic efficiencies catalyzing thiazoline and amide/thioester
bond formation and (2) putative C–N and C–S bond cleavage
off-loading manners, which lead to products with different chain lengths
and usual termini. Additionally, the post-assembly-line spontaneous
conversions of the biosynthetic end product contribute to production
titers of the other products in the culture medium. This study broadens
our knowledge of thiotemplated biosynthesis and how bacterial host
generate a chemical arsenal.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Merle Hirschmann
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Yan-Ni Shi
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.,Chemical Biology, Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Moscatello NJ, Pfeifer BA. Yersiniabactin metal binding characterization and removal of nickel from industrial wastewater. Biotechnol Prog 2017; 33:1548-1554. [DOI: 10.1002/btpr.2542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/21/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Nicholas J. Moscatello
- Dept. of Chemical and Biological Engineering; University at Buffalo, The State University of New York; Buffalo NY 14260
| | - Blaine A. Pfeifer
- Dept. of Chemical and Biological Engineering; University at Buffalo, The State University of New York; Buffalo NY 14260
| |
Collapse
|
4
|
Moscatello N, Qi R, Ahmadi MK, Pfeifer BA. Increased production of yersiniabactin and an anthranilate analog through media optimization. Biotechnol Prog 2017; 33:1193-1200. [DOI: 10.1002/btpr.2496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/21/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Nicholas Moscatello
- Dept. of Chemical and Biological Engineering; University at Buffalo, The State University of New York; Buffalo 14260 NY
| | - Ruiquan Qi
- Dept. of Chemical and Biological Engineering; University at Buffalo, The State University of New York; Buffalo 14260 NY
| | - Mahmoud Kamal Ahmadi
- Dept. of Chemical and Biological Engineering; University at Buffalo, The State University of New York; Buffalo 14260 NY
| | - Blaine A. Pfeifer
- Dept. of Chemical and Biological Engineering; University at Buffalo, The State University of New York; Buffalo 14260 NY
| |
Collapse
|
5
|
Ahmadi MK, Pfeifer BA. Improved heterologous production of the nonribosomal peptide‐polyketide siderophore yersiniabactin through metabolic engineering and induction optimization. Biotechnol Prog 2016; 32:1412-1417. [DOI: 10.1002/btpr.2369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Mahmoud Kamal Ahmadi
- Dept. of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New YorkBuffalo NY
| | - Blaine A. Pfeifer
- Dept. of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New YorkBuffalo NY
| |
Collapse
|