1
|
Wu N, Xu ZC, Du KD, Huang S, Kobayashi N, Kuroda Y, Bai YH. A Structural Model of Truncated Gaussia princeps Luciferase Elucidating the Crucial Catalytic Function of No.76 Arginine towards Coelenterazine Oxidation. PLoS Comput Biol 2025; 21:e1012722. [PMID: 39836695 PMCID: PMC11750096 DOI: 10.1371/journal.pcbi.1012722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Gaussia Luciferase (GLuc) is a renowned reporter protein that can catalyze the oxidation of coelenterazine (CTZ) and emit a bright light signal. GLuc comprises two consecutive repeats that form the enzyme body and a central putative catalytic cavity. However, deleting the C-terminal repeat only limited reduces the activity (over 30% residual luminescence intensity detectable), despite being a key part of the cavity. How does the remaining GLuc (tGLuc) catalyze CTZ? To address this question, we built a structural model of tGLuc by removing the C-terminal repeat from the resolved structure of intact GLuc, and verified that the cavity-forming component in GLuc remains stable and provides an open-mouth cavity in tGLuc during 500 ns MD simulations in water. Docking simulation and a followed umbrella sampling analysis further revealed that the cavity on tGLuc has a high affinity for CTZ, with a binding energy of up to -114 kJ/mol. Moreover, R76, a validated activity-critical amino acid residue, resides in the cavity and forms a stable hydrogen bond with CTZ. Then, we constructed a cluster model to examine the CTZ oxidation pathway in the cavity using Density Functional Theory (DFT) calculations. The result showed that the pathway consists of four elementary reactions, with the highest Gibbs energy barrier being 65.4 kJ/mol. Both intramolecular electron transfer and the convergence of S1/S0 potential energy surfaces occurred in the last elementary reaction, which was regarded as the reported Chemically-Initiated-Electron-Exchange-Luminescence (CIEEL) reaction. Geometry and wavefunction analysis on the pathway indicated that R76 plays a vital role in CTZ oxidation, which first anchors the environmental oxygen molecule and induces it to form a singlet biradical state, facilitating its attack on CTZ. Subsequently, R76 and the adjacent Q88, positioned near R76 through the tGLuc refolding process, stabilize the transition states and facilitate the emergence of radical electrons on CTZ at the onset of the CIEEL reaction, which contributes to the subsequent intramolecular electron transfer and the production of excited amide product. This study provides a comprehensive explanation of tGLuc's catalytic mechanism. However, it is important to note that these findings are specific to tGLuc and may not extend to other CTZ-based luciferases, particularly those lacking arginine in their catalytic cavities, which likely operate via distinct mechanisms.
Collapse
Affiliation(s)
- Nan Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
| | - Zhi-Chao Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
| | - Kai-Dong Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
| | - Shen Huang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
| | - Naohiro Kobayashi
- RIKEN Center for Biosystems Dynamics Research, RSC, RIKEN, Tsurumi-ku, Yokohama City, Kanagawa, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, People’s Republic of China
| |
Collapse
|
2
|
Yang X, Zhang R, Han W, Han L. Molecular Dynamics Simulation Combined with Neural Relationship Inference and Markov Model to Reveal the Relationship between Conformational Regulation and Bioluminescence Properties of Gaussia Luciferase. Molecules 2024; 29:4029. [PMID: 39274876 PMCID: PMC11396600 DOI: 10.3390/molecules29174029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Gaussia luciferase (Gluc) is currently known as the smallest naturally secreted luciferase. Due to its small molecular size, high sensitivity, short half-life, and high secretion efficiency, it has become an ideal reporter gene and is widely used in monitoring promoter activity, studying protein-protein interactions, protein localization, high-throughput drug screening, and real-time monitoring of tumor occurrence and development. Although studies have shown that different Gluc mutations exhibit different bioluminescent properties, their mechanisms have not been further investigated. The purpose of this study is to reveal the relationship between the conformational changes of Gluc mutants and their bioluminescent properties through molecular dynamics simulation combined with neural relationship inference (NRI) and Markov models. Our results indicate that, after binding to the luciferin coelenterazine (CTZ), the α-helices of the 109-119 residues of the Gluc Mutant2 (GlucM2, the flash-type mutant) are partially unraveled, while the α-helices of the same part of the Gluc Mutant1 (GlucM1, the glow-type mutant) are clearly formed. The results of Markov flux analysis indicate that the conformational differences between glow-type and flash-type mutants when combined with luciferin substrate CTZ mainly involve the helicity change of α7. The most representative conformation and active pocket distance analysis indicate that compared to the flash-type mutant GlucM2, the glow-type mutant GlucM1 has a higher degree of active site closure and tighter binding. In summary, we provide a theoretical basis for exploring the relationship between the conformational changes of Gluc mutants and their bioluminescent properties, which can serve as a reference for the modification and evolution of luciferases.
Collapse
Affiliation(s)
- Xiaotang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ruoyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lu Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
3
|
Dijkema FM, Escarpizo‐Lorenzana MI, Nordentoft MK, Rabe HC, Sahin C, Landreh M, Branca RM, Sørensen ES, Christensen B, Prestel A, Teilum K, Winther JR. A suicidal and extensively disordered luciferase with a bright luminescence. Protein Sci 2024; 33:e5115. [PMID: 39023083 PMCID: PMC11255867 DOI: 10.1002/pro.5115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Gaussia luciferase (GLuc) is one of the most luminescent luciferases known and is widely used as a reporter in biochemistry and cell biology. During catalysis, GLuc undergoes inactivation by irreversible covalent modification. The mechanism by which GLuc generates luminescence and how it becomes inactivated are however not known. Here, we show that GLuc unlike other enzymes has an extensively disordered structure with a minimal hydrophobic core and no apparent binding pocket for the main substrate, coelenterazine. From an alanine scan, we identified two Arg residues required for light production. These residues separated with an average of about 22 Å and a major structural rearrangement is required if they are to interact with the substrate simultaneously. We furthermore show that in addition to coelenterazine, GLuc also can oxidize furimazine, however, in this case without production of light. Both substrates result in the formation of adducts with the enzyme, which eventually leads to enzyme inactivation. Our results demonstrate that a rigid protein structure and substrate-binding site are no prerequisites for high enzymatic activity and specificity. In addition to the increased understanding of enzymes in general, the findings will facilitate future improvement of GLuc as a reporter luciferase.
Collapse
Affiliation(s)
- Fenne Marjolein Dijkema
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | | | - Hanna Christin Rabe
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Cagla Sahin
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Rui Mamede Branca
- Science for Life Laboratory, Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | - Esben Skipper Sørensen
- Department of Molecular Biology and Genetics, Section for Cellular Health, Intervention and NutritionAarhus UniversityAarhus CentrumDenmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Section for Cellular Health, Intervention and NutritionAarhus UniversityAarhus CentrumDenmark
| | - Andreas Prestel
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kaare Teilum
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jakob Rahr Winther
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Beyond luciferase-luciferin system: Modification, improved imaging and biomedical application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Takatsu K, Kobayashi N, Wu N, Janin YL, Yamazaki T, Kuroda Y. Biophysical analysis of Gaussia Luciferase bioluminescence mechanisms using a non-oxidizable coelenterazine. BBA ADVANCES 2022; 3:100068. [PMID: 37082267 PMCID: PMC10074842 DOI: 10.1016/j.bbadva.2022.100068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gaussia luciferase (GLuc 18.2kDa; 168 residues) is a marine copepod luciferase that emits a bright blue light when oxidizing coelenterazine (CTZ). It is a helical protein where two homologous sequential repeats form two anti-parallel bundles, each made of four helices. We previously identified a hydrophobic cavity as a prime candidate for the catalytic site, but GLuc's fast bioluminescence reaction hampered a detailed analysis. Here, we used azacoelenterazine (Aza-CTZ), a non-oxidizable coelenterazine (CTZ) analog, as a probe to investigate its binding mode to GLuc. While analysing GLuc's activity, we unexpectedly found that salt and monovalent anions are absolutely required for Gluc's bioluminescence, which retrospectively appears reasonable for a sea-dwelling organism. The NMR-based investigation, using chemical shift perturbations monitored by 15N-1H HSQC, suggested that Aza-CTZ (and thus unoxidized CTZ) binds to residues in or near the hydrophobic cavity. These NMR data are in line with a recent structural prediction of GLuc, hypothesizing that large structural changes occur in regions remote from the hydrophobic cavity upon the addition of CTZ. Interestingly, these results point toward a unique mode of catalysis to achieve CTZ oxidative decarboxylation.
Collapse
|
6
|
Wu N, Kobayashi N, Kuroda Y, Yamazaki T. Reflecting on mutational and biophysical analysis of Gaussia princeps Luciferase from a structural perspective: a unique bioluminescent enzyme. Biophys Rev 2022; 14:1513-1520. [PMID: 36659992 PMCID: PMC9842821 DOI: 10.1007/s12551-022-01025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Gaussia princeps luciferase (GLuc 18.2 kDa; 168 residues) is a marine copepod luciferase that emits a bright blue light when oxidizing coelenterazine (CTZ). GLuc is a small luciferase, attracting much attention as a potential reporter protein. However, compared to firefly and Renilla luciferases, which have been thoroughly characterized and are used in a wide range of applications, structural and biophysical studies of GLuc have been slow to appear. Here, we review the biophysical and mutational studies of GLuc's bioluminescence from a structural viewpoint, particularly in view of its recent NMR solution structure, where two homologous sequential repeats form two anti-parallel bundles, each made of four helices, grabbing a short N-terminal helix. Additionally, a long loop classified as an intrinsically disordered region separates the two bundles forming one side of a hydrophobic pocket that is most likely the binding/catalytic site. We compare the NMR-determined structure with a recent AlphaFold2 prediction. Overall, the AlphaFold2 structure was in line with the solution structure; however, it surprisingly revealed a possible, alternative conformation, where the N-terminal helix is replaced by a newly formed α helix in the C-terminal tail that is unfolded in the NMR structure. In addition, we discuss the results of previous mutational analysis focusing on a putative catalytic core identified by chemical shift perturbation analysis and molecular dynamics simulations performed using both the NMR and the AlphaFold2 structures. In particular, we discuss the role of the possible conformational change and the hydrophobic pocket in GLuc's activity. Overall, the discussion points toward GLuc's unexpected and unusual characteristics that appear to be much more flexible than traditional enzymes, resulting in a unique mode of catalysis to achieve CTZ oxidative decarboxylation. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01025-6.
Collapse
Affiliation(s)
- Nan Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou, 450001 People’s Republic of China
| | - Naohiro Kobayashi
- RIKEN Center for Biosystems Dynamics Research, RSC, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045 Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-Shi, Tokyo, 184-8588 Japan
| | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research, RSC, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
7
|
Solution structure of Gaussia Luciferase with five disulfide bonds and identification of a putative coelenterazine binding cavity by heteronuclear NMR. Sci Rep 2020; 10:20069. [PMID: 33208800 PMCID: PMC7674443 DOI: 10.1038/s41598-020-76486-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/26/2020] [Indexed: 12/03/2022] Open
Abstract
Gaussia luciferase (GLuc) is a small luciferase (18.2 kDa; 168 residues) and is thus attracting much attention as a reporter protein, but the lack of structural information is hampering further application. Here, we report the first solution structure of a fully active, recombinant GLuc determined by heteronuclear multidimensional NMR. We obtained a natively folded GLuc by bacterial expression and efficient refolding using a Solubility Enhancement Petide (SEP) tag. Almost perfect assignments of GLuc’s 1H, 13C and 15N backbone signals were obtained. GLuc structure was determined using CYANA, which automatically identified over 2500 NOEs of which > 570 were long-range. GLuc is an all-alpha-helix protein made of nine helices. The region spanning residues 10–18, 36–81, 96–145 and containing eight out of the nine helices was determined with a Cα-atom RMSD of 1.39 Å ± 0.39 Å. The structure of GLuc is novel and unique. Two homologous sequential repeats form two anti-parallel bundles made by 4 helices and tied together by three disulfide bonds. The N-terminal helix 1 is grabbed by these 4 helices. Further, we found a hydrophobic cavity where several residues responsible for bioluminescence were identified in previous mutational studies, and we thus hypothesize that this is a catalytic cavity, where the hydrophobic coelenterazine binds and the bioluminescence reaction takes place.
Collapse
|