1
|
Sinkjaer AW, Sloth AB, Andersen AO, Jensen M, Bakhshinejad B, Kjaer A. A comparative analysis of sequence composition in different lots of a phage display peptide library during amplification. Virol J 2025; 22:24. [PMID: 39893369 PMCID: PMC11786364 DOI: 10.1186/s12985-024-02600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/07/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND To develop efficient selection strategies and improve the discovery of promising ligands, it is highly desirable to analyze the sequence composition of naïve phage display libraries and monitor the evolution of their peptide content during successive rounds of amplification. In the current study, we performed a comparative analysis of the compositional features in different lots of the same naïve phage display library and monitored alterations in their peptide compositions during three rounds of amplification. METHODS We conducted three rounds of duplicate serial amplification of two different lots of the Ph.D.™-12 phage display library. DNA from the samples was subjected to Next-Generation Sequencing (NGS) using an Illumina platform. The NGS datasets underwent a variety of bioinformatic analyses using Python and MATLAB scripts. RESULTS We observed substantial heterogeneity in the sequence composition of the two lots indicated by differences in the enhanced percentage of wildtype clones, reduced diversity (number of unique sequences), and increased enrichment factors (EFs) during amplification as well as by observing no common sequence between lots and decreased number of common sequences between the naïve library and the consecutive rounds of amplification for each lot. We also found potential propagation-related target-unrelated peptides (TUPs) with the highest EFs in the two lots, which were displayed by the fastest-propagating phage clones. Furthermore, motif analysis of the most enriched subpopulation of amplified libraries led to the identification of some motifs hypothesized to contribute to the increased amplification rates of the respective phage clones. CONCLUSION Our results highlight tremendous heterogeneity in the peptide composition of different lots of the same type of naïve phage display library, and the divergent evolution of their compositional features during amplification rounds at the amino acid, peptide, and motif levels. Our findings can be instrumental for phage display researchers by bringing fundamental insights into the vast extent of non-uniformity between phage display libraries and by providing a clear picture of how these discrepancies can lead to different evolutionary fates for the peptide composition of phage pools, which can have profound impacts on the outcome of phage display selections through biopanning.
Collapse
Affiliation(s)
- Anders Wilgaard Sinkjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ane Beth Sloth
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Amanda Oester Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Malte Jensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Babak Bakhshinejad
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
2
|
Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury. Cells 2021; 10:cells10082102. [PMID: 34440872 PMCID: PMC8394044 DOI: 10.3390/cells10082102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma that can cause permanent disability, life-long chronic issues for sufferers and is a big socioeconomic burden. Regenerative medicine aims to overcome injury caused deficits and restore function after SCI through gene therapy and tissue engineering approaches. SCI has a multifaceted pathophysiology. Due to this, producing therapies that target multiple different cellular and molecular mechanisms might prove to be a superior approach in attempts at regeneration. Both biomaterials and nucleic acid delivery via lentiviral vectors (LVs) have proven to promote repair and restoration of function post SCI in animal models. Studies indicate that a combination of biomaterials and LVs is more effective than either approach alone. This review presents studies supporting the use of LVs and LVs delivered with biomaterials in therapies for SCI and summarises methods to combine LVs with biomaterials for SCI treatment. By summarising this knowledge this review aims to demonstrate how LV delivery with biomaterials can augment/compliment both LV and biomaterial therapeutic effects in SCI.
Collapse
|
3
|
Ciciriello AJ, Smith DR, Munsell MK, Boyd SJ, Shea LD, Dumont CM. IL-10 lentivirus-laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury. Biotechnol Bioeng 2021; 118:2609-2625. [PMID: 33835500 DOI: 10.1002/bit.27781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
A complex cellular cascade characterizes the pathophysiological response following spinal cord injury (SCI) limiting regeneration. Biomaterial and stem cell combination therapies together have shown synergistic effects, compared to the independent benefits of each intervention, and represent a promising approach towards regaining function after injury. In this study, we combine our polyethylene glycol (PEG) cell delivery platform with lentiviral-mediated overexpression of the anti-inflammatory cytokine interleukin (IL)-10 to improve mouse embryonic Day 14 (E14) spinal progenitor transplant survival. Immediately following injury in a mouse SCI hemisection model, five PEG tubes were implanted followed by direct injection into the tubes of lentivirus encoding for IL-10. Two weeks after tube implantation, mouse E14 spinal progenitors were injected directly into the integrated tubes, which served as a soft substrate for cell transplantation. Together, the tubes with the IL-10 encoding lentivirus improved E14 spinal progenitor survival, assessed at 2 weeks posttransplantation (4 weeks postinjury). On average, 8.1% of E14 spinal progenitors survived in mice receiving IL-10 lentivirus-laden tubes compared with 0.7% in mice receiving transplants without tubes, an 11.5-fold difference. Surviving E14 spinal progenitors gave rise to neurons when injected into tubes. Axon elongation and remyelination were observed, in addition to a significant increase in functional recovery in mice receiving IL-10 lentivirus-laden tubes with E14 spinal progenitor delivery compared to the injury only control by 4 weeks postinjury. All other conditions did not exhibit increased stepping until 8 or 12 weeks postinjury. This system affords increased control over the transplantation microenvironment, offering the potential to improve stem cell-mediated tissue regeneration.
Collapse
Affiliation(s)
- Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary K Munsell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Sydney J Boyd
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|
4
|
Ehsanipour A, Sathialingam M, Rad LM, de Rutte J, Bierman RD, Liang J, Xiao W, Di Carlo D, Seidlits SK. Injectable, macroporous scaffolds for delivery of therapeutic genes to the injured spinal cord. APL Bioeng 2021; 5:016104. [PMID: 33728392 PMCID: PMC7946441 DOI: 10.1063/5.0035291] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Biomaterials are being developed as therapeutics for spinal cord injury (SCI) that can stabilize and bridge acute lesions and mediate the delivery of transgenes, providing a localized and sustained reservoir of regenerative factors. For clinical use, direct injection of biomaterial scaffolds is preferred to enable conformation to unique lesions and minimize tissue damage. While an interconnected network of cell-sized macropores is necessary for rapid host cell infiltration into-and thus integration of host tissue with-implanted scaffolds, injectable biomaterials have generally suffered from a lack of control over the macrostructure. As genetic vectors have short lifetimes in vivo, rapid host cell infiltration into scaffolds is a prerequisite for efficient biomaterial-mediated delivery of transgenes. We present scaffolds that can be injected and assembled in situ from hyaluronic acid (HA)-based, spherical microparticles to form scaffolds with a network of macropores (∼10 μm). The results demonstrate that addition of regularly sized macropores to traditional hydrogel scaffolds, which have nanopores (∼10 nm), significantly increases the expression of locally delivered transgene to the spinal cord after a thoracic injury. Maximal cell and axon infiltration into scaffolds was observed in scaffolds with more regularly sized macropores. The delivery of lentiviral vectors encoding the brain-derived neurotrophic factor (BDNF), but not neurotrophin-3, from these scaffolds further increased total numbers and myelination of infiltrating axons. Modest improvements to the hindlimb function were observed with BDNF delivery. The results demonstrate the utility of macroporous and injectable HA scaffolds as a platform for localized gene therapies after SCI.
Collapse
Affiliation(s)
- Arshia Ehsanipour
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Mayilone Sathialingam
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Laila M Rad
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Rebecca D Bierman
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Jesse Liang
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Weikun Xiao
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
5
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|
6
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
7
|
Ehsanipour A, Nguyen T, Aboufadel T, Sathialingam M, Cox P, Xiao W, Walthers CM, Seidlits SK. Injectable, Hyaluronic Acid-Based Scaffolds with Macroporous Architecture for Gene Delivery. Cell Mol Bioeng 2019; 12:399-413. [PMID: 31719923 PMCID: PMC6816628 DOI: 10.1007/s12195-019-00593-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Biomaterials can provide localized reservoirs for controlled release of therapeutic biomolecules and drugs for applications in tissue engineering and regenerative medicine. As carriers of gene-based therapies, biomaterial scaffolds can improve efficiency and delivery-site localization of transgene expression. Controlled delivery of gene therapy vectors from scaffolds requires cell-scale macropores to facilitate rapid host cell infiltration. Recently, advanced methods have been developed to form injectable scaffolds containing cell-scale macropores. However, relative efficacy of in vivo gene delivery from scaffolds formulated using these general approaches has not been previously investigated. Using two of these methods, we fabricated scaffolds based on hyaluronic acid (HA) and compared how their unique, macroporous architectures affected their respective abilities to deliver transgenes via lentiviral vectors in vivo. METHODS Three types of scaffolds-nanoporous HA hydrogels (NP-HA), annealed HA microparticles (HA-MP) and nanoporous HA hydrogels containing protease-degradable poly(ethylene glycol) (PEG) microparticles as sacrificial porogens (PEG-MP)-were loaded with lentiviral particles encoding reporter transgenes and injected into mouse mammary fat. Scaffolds were evaluated for their ability to induce rapid infiltration of host cells and subsequent transgene expression. RESULTS Cell densities in scaffolds, distances into which cells penetrated scaffolds, and transgene expression levels significantly increased with delivery from HA-MP, compared to NP-HA and PEG-MP, scaffolds. Nearly 8-fold greater cell densities and up to 16-fold greater transgene expression levels were found in HA-MP, over NP-HA, scaffolds. Cell profiling revealed that within HA-MP scaffolds, macrophages (F4/80+), fibroblasts (ERTR7+) and endothelial cells (CD31+) were each present and expressed delivered transgene. CONCLUSIONS Results demonstrate that injectable scaffolds containing cell-scale macropores in an open, interconnected architecture support rapid host cell infiltration to improve efficiency of biomaterial-mediated gene delivery.
Collapse
Affiliation(s)
- Arshia Ehsanipour
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Tommy Nguyen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Tasha Aboufadel
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Mayilone Sathialingam
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Phillip Cox
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Weikun Xiao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Christopher M. Walthers
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA 90095 USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095 USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095 USA
- Center for Minimally Invasive Therapeutics, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
8
|
Oakes RS, Froimchuk E, Jewell CM. Engineering Biomaterials to Direct Innate Immunity. ADVANCED THERAPEUTICS 2019; 2:1800157. [PMID: 31236439 PMCID: PMC6590522 DOI: 10.1002/adtp.201800157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 12/18/2022]
Abstract
Small alterations during early stages of innate immune response can drive large changes in how adaptive immune cells develop and function during protective immunity or disease. Controlling these events creates exciting potential in development of immune engineered vaccines and therapeutics. This progress report discusses recent biomaterial technologies exploiting innate immunity to dissect immune function and to design new vaccines and immunotherapies for infectious diseases, cancer, and autoimmunity. Across these examples, an important idea is the possibility to co-opt innate immune mechanisms to enhance immunity during infection and cancer. During inflammatory or autoimmune disease, some of these same innate immune mechanisms can be manipulated in different ways to control excess inflammation by promotion of immunological tolerance.
Collapse
Affiliation(s)
- R. S. Oakes
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - E. Froimchuk
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - C. M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, Maryland 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Shrimali P, Peter M, Singh A, Dalal N, Dakave S, Chiplunkar SV, Tayalia P. Efficient in situ gene delivery via PEG diacrylate matrices. Biomater Sci 2019; 6:3241-3250. [PMID: 30334035 DOI: 10.1039/c8bm00916c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For diseases related to genetic disorders or cancer, many cellular therapies rely on the ex vivo modification of cells for attaining a desired therapeutic effect. The efficacy of such therapies involving the genetic modification of cells relies on the extent of gene expression and subsequent persistence of modified cells when infused into the patient's body. In situ gene delivery implies the manipulation of cells in their in vivo niche such that the effectiveness can be improved by minimizing post manipulation effects like cell death, lack of persistence, etc. Furthermore, material-based in situ localized gene delivery can reduce the undesired side effects caused by systemic modifications. Here, we have used polyethylene (glycol) diacrylate (PEGDA) based cryogels to genetically modify cells in vivo with a focus on immunotherapy. PEGDA cryogels were either blended with gelatin methacrylate (GELMA) or surface modified with poly-l-lysine (PLL) in order to improve cell adhesion and/or retain viruses for localized gene delivery. On using the lentiviruses encoding gene for green fluorescent protein (GFP) in in vitro experiments, we found higher transduction efficiency in HEK 293FT cells via PEGDA modified with poly-l-lysine (PEGDA-PLL) and PEGDA-GELMA cryogels compared to PEGDA cryogels. In vitro release experiments showed improved retention of GFP lentiviruses in PEGDA-PLL cryogels, which were then employed for in vivo gene delivery and were demonstrated to perform better than the corresponding bolus delivery of lentiviruses through an injection. Both physical and biological characterization studies of these cryogels show that this material platform can be used for gene delivery as well as other tissue engineering applications.
Collapse
Affiliation(s)
- Paresh Shrimali
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Polymeric matrices inherently protect viral vectors from pre-existing immune conditions, limit dissemination to off-target sites, and can sustain vector release. Advancing methodologies in development of particulate based vehicles have led to improved encapsulation of viral vectors. Polymeric delivery systems have contributed to increasing cellular transduction, responsive release mechanisms, cellular infiltration, and cellular signaling. Synthetic polymers are easily customizable, and are capable of balancing matrix retention with cellular infiltration. Natural polymers contain inherent biorecognizable motifs adding therapeutic efficacy to the incorporated viral vector. Recombinant polymers use highly conserved motifs to carefully engineer matrices, allowing for precise design including elements of vector retention and responsive release mechanisms. Composite polymer systems provide opportunities to create matrices with unique properties. Carefully designed matrices can control spatiotemporal release patterns that synergize with approaches in regenerative medicine and antitumor therapies.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
11
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|
12
|
Madrigal JL, Stilhano R, Silva EA. Biomaterial-Guided Gene Delivery for Musculoskeletal Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:347-361. [PMID: 28166711 PMCID: PMC5749599 DOI: 10.1089/ten.teb.2016.0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy is a promising strategy for musculoskeletal tissue repair and regeneration where local and sustained expression of proteins and/or therapeutic nucleic acids can be achieved. However, the musculoskeletal tissues present unique engineering and biological challenges as recipients of genetic vectors. Targeting specific cell populations, regulating expression in vivo, and overcoming the harsh environment of damaged tissue accompany the general concerns of safety and efficacy common to all applications of gene therapy. In this review, we will first summarize these challenges and then discuss how biomaterial carriers for genetic vectors can address these issues. Second, we will review how limitations specific to given vectors further motivate the utility of biomaterial carriers. Finally, we will discuss how these concepts have been combined with tissue engineering strategies and approaches to improve the delivery of these vectors for musculoskeletal tissue regeneration.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Roberta Stilhano
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| |
Collapse
|