1
|
Dobersberger M, Sumesgutner D, Zajc CU, Salzer B, Laurent E, Emminger D, Sylvander E, Lehner E, Teufl M, Seigner J, Bobbili MR, Kunert R, Lehner M, Traxlmayr MW. An engineering strategy to target activated EGFR with CAR T cells. CELL REPORTS METHODS 2024; 4:100728. [PMID: 38492569 PMCID: PMC11045874 DOI: 10.1016/j.crmeth.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have shown remarkable response rates in hematological malignancies. In contrast, CAR T cell treatment of solid tumors is associated with several challenges, in particular the expression of most tumor-associated antigens at lower levels in vital organs, resulting in on-target/off-tumor toxicities. Thus, innovative approaches to improve the tumor specificity of CAR T cells are urgently needed. Based on the observation that many human solid tumors activate epidermal growth factor receptor (EGFR) on their surface through secretion of EGFR ligands, we developed an engineering strategy for CAR-binding domains specifically directed against the ligand-activated conformation of EGFR. We show, in several experimental systems, that the generated binding domains indeed enable CAR T cells to distinguish between active and inactive EGFR. We anticipate that this engineering concept will be an important step forward to improve the tumor specificity of CAR T cells directed against EGFR-positive solid cancers.
Collapse
Affiliation(s)
- Markus Dobersberger
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria
| | - Delia Sumesgutner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Charlotte U Zajc
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Benjamin Salzer
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elisabeth Laurent
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, 1190 Vienna, Austria
| | - Dominik Emminger
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elise Sylvander
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elisabeth Lehner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Magdalena Teufl
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Jacqueline Seigner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, BOKU University, 1190 Vienna, Austria
| | - Madhusudhan Reddy Bobbili
- Department of Biotechnology, Institute of Molecular Biotechnology, BOKU University, 1190 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, BOKU University, 1190 Vienna, Austria
| | - Manfred Lehner
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael W Traxlmayr
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Blanchard PL, Knick BJ, Whelan SA, Hackel BJ. Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds. ACS Synth Biol 2023; 12:3608-3622. [PMID: 38010428 PMCID: PMC10822706 DOI: 10.1021/acssynbio.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Small, single-domain protein scaffolds are compelling sources of molecular binding ligands with the potential for efficient physiological transport, modularity, and manufacturing. Yet, mini-proteins require a balance between biophysical robustness and diversity to enable new functions. We tested the developability and evolvability of millions of variants of 43 designed libraries of synthetic 40-amino acid βαββ proteins with diversified sheet, loop, or helix paratopes. We discovered a scaffold library that yielded hundreds of binders to seven targets while exhibiting high stability and soluble expression. Binder discovery yielded 6-122 nM affinities without affinity maturation and Tms averaging ≥78 °C. Broader βαββ libraries exhibited varied developability and evolvability. Sheet paratopes were the most consistently developable, and framework 1 was the most evolvable. Paratope evolvability was dependent on target, though several libraries were evolvable across many targets while exhibiting high stability and soluble expression. Select βαββ proteins are strong starting points for engineering performant binders.
Collapse
Affiliation(s)
- Paul L. Blanchard
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Brandon J. Knick
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Sarah A. Whelan
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| |
Collapse
|
3
|
Krohl PJ, Fine J, Yang H, VanDyke D, Ang Z, Kim KB, Thomas-Tikhonenko A, Spangler JB. Discovery of antibodies targeting multipass transmembrane proteins using a suspension cell-based evolutionary approach. CELL REPORTS METHODS 2023; 3:100429. [PMID: 37056366 PMCID: PMC10088246 DOI: 10.1016/j.crmeth.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023]
Abstract
Due to their critical functions in cell sensing and signal processing, membrane proteins are highly preferred as pharmacological targets, and antibody drugs constitute the fastest growing category of therapeutic agents on the pharmaceutical market. However, major limitations exist in developing antibodies that recognize complex, multipass transmembrane proteins, such as G-protein-coupled receptors (GPCRs). These challenges, largely due to difficulties with recombinant expression of multipass transmembrane proteins, can be overcome using whole-cell screening techniques, which enable presentation of the functional antigen in its native conformation. Here, we developed suspension cell-based whole-cell panning methodologies to screen for specific binders against GPCRs within a naive yeast-displayed antibody library. We implemented our strategy to discover high-affinity antibodies against four distinct GPCR target proteins, demonstrating the potential for our cell-based screening workflow to advance the discovery of antibody therapeutics targeting membrane proteins.
Collapse
Affiliation(s)
- Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Justyn Fine
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Zhiwei Ang
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kook Bum Kim
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie B. Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Pascual N, Belecciu T, Schmidt S, Nakisa A, Huang X, Woldring D. Single-Cell B-Cell Sequencing to Generate Natively Paired scFab Yeast Surface Display Libraries. Methods Mol Biol 2023; 2681:175-212. [PMID: 37405649 DOI: 10.1007/978-1-0716-3279-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The immune cell profiling capabilities of single-cell RNA sequencing (scRNA-seq) are powerful tools that can be applied to the design of theranostic monoclonal antibodies (mAbs). Using scRNA-seq to determine natively paired B-cell receptor (BCR) sequences of immunized mice as a starting point for design, this method outlines a simplified workflow to express single-chain antibody fragments (scFabs) on the surface of yeast for high-throughput characterization and further refinement with directed evolution experiments. While not extensively detailed in this chapter, this method easily accommodates the implementation of a growing body of in silico tools that improve affinity and stability among a range of other developability criteria (e.g., solubility and immunogenicity).
Collapse
Affiliation(s)
- Nathaniel Pascual
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Theodore Belecciu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sam Schmidt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Athar Nakisa
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Xuefei Huang
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Daniel Woldring
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Lajoie JM, Katt ME, Waters EA, Herrin BR, Shusta EV. Identification of lamprey variable lymphocyte receptors that target the brain vasculature. Sci Rep 2022; 12:6044. [PMID: 35411012 PMCID: PMC9001667 DOI: 10.1038/s41598-022-09962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) represents a significant bottleneck for the delivery of therapeutics to the central nervous system. In recent years, the promise of coopting BBB receptor-mediated transport systems for brain drug delivery has increased in large part due to the discovery and engineering of BBB-targeting antibodies. Here we describe an innovative screening platform for identification of new BBB targeting molecules from a class of lamprey antigen recognition proteins known as variable lymphocyte receptors (VLRs). Lamprey were immunized with murine brain microvessel plasma membranes, and the resultant repertoire cloned into the yeast surface display system. The library was screened via a unique workflow that identified 16 VLR clones that target extracellular epitopes of in vivo-relevant BBB membrane proteins. Of these, three lead VLR candidates, VLR-Fc-11, VLR-Fc-30, and VLR-Fc-46 selectively target the brain vasculature and traffic within brain microvascular endothelial cells after intravenous administration in mice, with VLR-Fc-30 being confirmed as trafficking into the brain parenchyma. Epitope characterization indicates that the VLRs, in part, recognize sialylated glycostructures. These promising new targeting molecules have the potential for brain targeting and drug delivery with improved brain vascular specificity.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Moriah E Katt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Elizabeth A Waters
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Komuro H, Aminova S, Lauro K, Woldring D, Harada M. Design and Evaluation of Engineered Extracellular Vesicle (EV)-Based Targeting for EGFR-Overexpressing Tumor Cells Using Monobody Display. Bioengineering (Basel) 2022; 9:bioengineering9020056. [PMID: 35200409 PMCID: PMC8869414 DOI: 10.3390/bioengineering9020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Extracellular vesicles (EVs) are attracting interest as a new class of drug delivery vehicles due to their intrinsic nature of biomolecular transport in the body. We previously demonstrated that EV surface modification with tissue-specific molecules accomplished targeted EV-mediated DNA delivery. Methods: Here, we describe reliable methods for (i) generating EGFR tumor-targeting EVs via the display of high-affinity monobodies and (ii) in vitro measurement of EV binding using fluorescence and bioluminescence labeling. Monobodies are a well-suited class of small (10 kDa) non-antibody scaffolds derived from the human fibronectin type III (FN3) domain. Results: The recombinant protein consists of the EGFR-targeting monobody fused to the EV-binding domain of lactadherin (C1C2), enabling the monobody displayed on the surface of the EVs. In addition, the use of bioluminescence or fluorescence molecules on the EV surface allows for the assessment of EV binding to the target cells. Conclusions: In this paper, we describe methods of EV engineering to generate targeted delivery vehicles using monobodies that will have diverse applications to furnish future EV therapeutic development, including qualitative and quantitative in vitro evaluation for their binding capacity.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-884-6940
| |
Collapse
|
7
|
Panton RA, Stern LA. Ligand Selection by Combination of Recombinant and Cell Panning Selection Techniques. Methods Mol Biol 2022; 2491:217-233. [PMID: 35482193 DOI: 10.1007/978-1-0716-2285-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-throughput protein selection methods are a cornerstone for protein engineering and pharmaceutical development. Traditional high-throughput selection strategies rely largely on recombinant antigen to generate target specificity. Though effective, this selection strategy can be limited by soluble target quality, particularly in the case of recombinant extracellular domains of transmembrane proteins. Recent advances in cell-based selection techniques provide new opportunities for improving the outcomes of ligand selection campaigns but can introduce technical challenges in maintaining antigen specificity due to the heterogeneity of biomacromolecule expression on the mammalian cell surface. Here, we describe a combination technique using recombinant antigen to "train" library target specificity followed by cell panning selections to ensure that isolated ligands bind cell-expressed target, as well as a facile microscopy technique for assessing target specificity on a clonal basis without the need to produce soluble ligand.
Collapse
Affiliation(s)
- Rojhae A Panton
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Lawrence A Stern
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Carrara SC, Bogen JP, Grzeschik J, Hock B, Kolmar H. Antibody Library Screening Using Yeast Biopanning and Fluorescence-Activated Cell Sorting. Methods Mol Biol 2022; 2491:177-193. [PMID: 35482191 DOI: 10.1007/978-1-0716-2285-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display (YSD) emerged as a prominent screening methodology for the isolation of monoclonal antibodies (mAbs) against various antigens. However, phage display remains the gold standard in cell panning-based screenings to isolate mAbs against difficult-to-screen targets, such as G-protein coupled receptors (GPCR) and ion channels. Herein we describe a step-by-step protocol to establish and perform the isolation of mAbs using YSD in a fluorescence-activated cell sorting (FACS)-assisted biopanning manner, yielding a variety of antibodies binding their antigen with high affinity in the natural environment of the cell. Upon mixing antibody-displaying yeast cells with antigen-displaying mammalian cells, complexes are specifically formed and isolated for enrichment of yeast cells encoding binders against the antigen. The utilization of mammalian cells expressing the respective target accounts for accessibility of the epitope and the correct conformation of the antigen. Furthermore, critical characterization methods mandatory for this kind of antibodies are illuminated.
Collapse
Affiliation(s)
- Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Björn Hock
- Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
9
|
Krohl PJ, Spangler JB. A Hybrid Adherent/Suspension Cell-Based Selection Strategy for Discovery of Antibodies Targeting Membrane Proteins. Methods Mol Biol 2022; 2491:195-216. [PMID: 35482192 PMCID: PMC9667817 DOI: 10.1007/978-1-0716-2285-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane proteins are favored drug targets and antibody therapeutics represent the fastest-growing category of pharmaceuticals. However, there remains a need for rapid and effective approaches for the discovery of antibodies that recognize membrane proteins to develop a robust clinical pipeline for targeted therapeutics. The challenges associated with recombinant expression of membrane proteins make whole cell screening techniques desirable, as these strategies allow presentation of the target membrane proteins in their native conformations. Here, we describe a workflow that employs both adherent cell-based and suspension cell-based whole cell panning methodologies to enrich for specific binders within a yeast-displayed antibody library. The first round of selection consists of an adherent cell-based approach, wherein a diverse library is panned over target-expressing mammalian cell monolayers in order to debulk the naïve library. Subsequent rounds involve the use of suspension cell-based approaches, facilitated with magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS), to achieve further library enrichment. Finally, we describe a high-throughput approach to screen target binding and specificity of individual clones isolated from selection campaigns.
Collapse
Affiliation(s)
- Patrick J Krohl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Lown PS, Cai JJ, Ritter SC, Otolski JJ, Wong R, Hackel BJ. Extended yeast surface display linkers enhance the enrichment of ligands in direct mammalian cell selections. Protein Eng Des Sel 2021; 34:gzab004. [PMID: 33880560 PMCID: PMC8058008 DOI: 10.1093/protein/gzab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Selections of yeast-displayed ligands on mammalian cell monolayers benefit from high target expression and nanomolar affinity, which are not always available. Prior work extending the yeast-protein linker from 40 to 80 amino acids improved yield and enrichment but is hypothesized to be below the optimal length, prompting evaluation of an extended amino acid linker. A 641-residue linker provided enhanced enrichment with a 2-nM affinity fibronectin ligand and 105 epidermal growth factor receptors (EGFR) per cell (14 ± 2 vs. 8 ± 1, P = 0.008) and a >600-nM affinity ligand, 106 EGFR per cell system (23 ± 7 vs. 0.8 ± 0.2, P = 0.004). Enhanced enrichment was also observed with a 310-nM affinity affibody ligand and 104 CD276 per cell, suggesting a generalizable benefit to other scaffolds and targets. Spatial modeling of the linker suggests that improved extracellular accessibility of ligand enables the observed enrichment under conditions not previously possible.
Collapse
Affiliation(s)
- Patrick S Lown
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Jessy J Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Seth C Ritter
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Jacob J Otolski
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Ryan Wong
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Zhao S, Guo D, Zhu Q, Dou W, Guan W. Display of Microbial Glucose Dehydrogenase and Cholesterol Oxidase on the Yeast Cell Surface for the Detection of Blood Biochemical Parameters. BIOSENSORS 2020; 11:13. [PMID: 33396921 PMCID: PMC7823397 DOI: 10.3390/bios11010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 01/16/2023]
Abstract
High levels of blood glucose are always associated with numerous complications including cholesterol abnormalities. Therefore, it is important to simultaneously monitor blood glucose and cholesterol levels in patients with diabetes during the management of chronic diseases. In this study, a glucose dehydrogenase from Aspergillus oryzae TI and a cholesterol oxidase from Chromobacterium sp. DS-1 were displayed on the surface of Saccharomyces cerevisiae, respectively, using the yeast surface display system at a high copy number. In addition, two whole-cell biosensors were constructed through the immobilization of the above yeast cells on electrodes, for electrochemical detection of glucose and cholesterol. The assay time was 8.5 s for the glucose biosensors and 30 s for the cholesterol biosensors. Under optimal conditions, the cholesterol biosensor exhibited a linear range from 2 to 6 mmol·L-1. The glucose biosensor responded efficiently to the presence of glucose at a concentration range of 20-600 mg·dL-1 (1.4-33.3 mmol·L-1) and showed excellent anti-xylose interference properties. Both biosensors exhibited good performance at room temperature and remained stable over a three-week storage period.
Collapse
Affiliation(s)
- Shiyao Zhao
- Institute of Pharmaceutical Biotechnology and the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China; (S.Z.); (Q.Z.); (W.D.)
| | - Dong Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, China;
| | - Quanchao Zhu
- Institute of Pharmaceutical Biotechnology and the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China; (S.Z.); (Q.Z.); (W.D.)
| | - Weiwang Dou
- Institute of Pharmaceutical Biotechnology and the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China; (S.Z.); (Q.Z.); (W.D.)
| | - Wenjun Guan
- Institute of Pharmaceutical Biotechnology and the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China; (S.Z.); (Q.Z.); (W.D.)
| |
Collapse
|
12
|
Bogen JP, Storka J, Yanakieva D, Fiebig D, Grzeschik J, Hock B, Kolmar H. Isolation of Common Light Chain Antibodies from Immunized Chickens Using Yeast Biopanning and Fluorescence-Activated Cell Sorting. Biotechnol J 2020; 16:e2000240. [PMID: 32914549 DOI: 10.1002/biot.202000240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/31/2020] [Indexed: 12/19/2022]
Abstract
The phylogenetic distance between chickens and humans accounts for a strong immune response and a broader epitope coverage compared to rodent immunization approaches. Here the authors report the isolation of common light chain (cLC)-based chicken monoclonal antibodies from an anti-epidermal growth factor receptor (EGFR) immune library utilizing yeast surface display in combination with yeast biopanning and fluorescence-activated cell sorting (FACS). For the selection of high-affinity antibodies, a yeast cell library presenting cLC-comprising fragment antigen binding (Fab) fragments is panned against hEGFR-overexpressing A431 cells. The resulting cell-cell-complexes are sorted by FACS resulting in gradual enrichment of EGFR-binding Fabs in three sorting rounds. The isolated antibodies share the same light chain and show high specificity for EGFR, resulting in selective binding to A431 cells with notable EC50 values. All identified antibodies show very good aggregation propensity profiles and thermostabilities. Additionally, epitope binning demonstrates that these cLC antibodies cover a broad epitope space. Isolation of antibodies from immunized chickens by yeast cell biopanning makes an addition to the repertoire of methods for antibody library screening, paving the way for the generation of cLC-based bispecific antibodies against native mammalian receptors.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - Juliana Storka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - Desislava Yanakieva
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, Saint-Prex, CH-1162, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| |
Collapse
|
13
|
Rosch JC, Neal EH, Balikov DA, Rahim M, Lippmann ES. CRISPR-Mediated Isogenic Cell-SELEX Approach for Generating Highly Specific Aptamers Against Native Membrane Proteins. Cell Mol Bioeng 2020; 13:559-574. [PMID: 33184583 PMCID: PMC7596163 DOI: 10.1007/s12195-020-00651-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The generation of affinity reagents that bind native membrane proteins with high specificity remains challenging. Most in vitro selection paradigms utilize different cell types for positive and negative rounds of selection (where the positive selection is against a cell that expresses the desired membrane protein and the negative selection is against a cell that lacks the protein). However, this strategy can yield affinity reagents that bind unintended membrane proteins on the target cells. To address this issue, we developed a systematic evolution of ligands by exponential enrichment (SELEX) scheme that utilizes isogenic pairs of cells generated via CRISPR techniques. METHODS Using a Caco-2 epithelial cell line with constitutive Cas9 expression, we knocked out the SLC2A1 gene (encoding the GLUT1 glucose transporter) via lipofection with synthetic gRNAs. Cell-SELEX rounds were carried out against wild-type and GLUT1-null cells using a single-strand DNA (ssDNA) library. Next-generation sequencing (NGS) was used to quantify enrichment of prospective binders to the wild-type cells. RESULTS 10 rounds of cell-SELEX were conducted via simultaneous exposure of ssDNA pools to wild-type and GLUT1-null Caco-2 cells under continuous perfusion. The top binders identified from NGS were validated by flow cytometry and immunostaining for their specificity to the GLUT1 receptor. CONCLUSIONS Our data indicate that highly specific aptamers can be isolated with a SELEX strategy that utilizes isogenic cell lines. This approach may be broadly useful for generating affinity reagents that selectively bind to membrane proteins in their native conformations on the cell surface.
Collapse
Affiliation(s)
- Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Emma H. Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Daniel A. Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
14
|
Krohl PJ, Kim KB, Lew L, VanDyke D, Ludwig SD, Spangler JB. A suspension cell‐based interaction platform for interrogation of membrane proteins. AIChE J 2020. [DOI: 10.1002/aic.16995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Kook Bum Kim
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Lance Lew
- Department of Biophysics Johns Hopkins University Baltimore Maryland USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Seth D. Ludwig
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Jamie B. Spangler
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
- Translational Tissue Engineering Center Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
15
|
Lown PS, Hackel BJ. Magnetic Bead-Immobilized Mammalian Cells Are Effective Targets to Enrich Ligand-Displaying Yeast. ACS COMBINATORIAL SCIENCE 2020; 22:274-284. [PMID: 32283920 DOI: 10.1021/acscombsci.0c00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Yeast surface display empowers selection of protein binding ligands, typically using recombinant soluble antigens. However, ectodomain fragments of transmembrane targets may fail to recapitulate their true, membrane-bound form. Direct selections against adhered mammalian cells empower enrichment of genuine binders yet benefit from high target expression, robustly adherent mammalian cells, and nanomolar affinity ligands. This study evaluates a modified format with mammalian cells immobilized to magnetic beads; yeast-displayed fibronectin domain and affibody ligands of known affinities and cells with expression ranges of epidermal growth factor receptor (EGFR) and CD276 elucidate important parameters to ligand enrichment and yield in cell suspension panning with comparison to adherent panning. Cell suspension panning is hindered by significant background of nondisplaying yeast but exhibits yield advantages in model EGFR systems for a high affinity (KD = 2 nM) binder on cells with both high (106 per cell) target expression (9.6 ± 0.6% vs 3.2 ± 0.4%, p < 0.0001) and mid (105) target expression (2.3 ± 0.5% vs 0.41 ± 0.09%, p = 0.0008), as well as for a low affinity (KD > 600 nM) binder on high target expression cells (2.0 ± 0.5% vs 0.017 ± 0.005%; p = 0.001). Significant enrichment was observed for all EGFR systems except the low-affinity, high expression system. The CD276 system failed to provide significant enrichment, indicating that this technique may not be suitable for all targets. Collectively, this study highlights new approaches that yield successful enrichment of yeast-displayed ligands via panning on immobilized mammalian cells.
Collapse
Affiliation(s)
- Patrick S. Lown
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Stern LA, Lown PS, Hackel BJ. Ligand Engineering via Yeast Surface Display and Adherent Cell Panning. Methods Mol Biol 2020; 2070:303-320. [PMID: 31625103 PMCID: PMC6996137 DOI: 10.1007/978-1-4939-9853-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-throughput ligand discovery and evolution-via genotype-phenotype linkage strategies-empower molecularly targeted therapy, diagnostics, and fundamental science. Maintaining high-quality target antigen in these selections, particularly for membrane targets, is often a technical challenge. Panning yeast-displayed ligand libraries on intact mammalian cells expressing the molecular target has emerged as an effective strategy. Herein we describe the techniques used to select target-binding ligands via this approach including the use of target-negative cells to deplete non-specific binders and avidity reduction to preferentially select high-affinity ligands.
Collapse
Affiliation(s)
- Lawrence A Stern
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Patrick S Lown
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Bacon K, Burroughs M, Blain A, Menegatti S, Rao BM. Screening Yeast Display Libraries against Magnetized Yeast Cell Targets Enables Efficient Isolation of Membrane Protein Binders. ACS COMBINATORIAL SCIENCE 2019; 21:817-832. [PMID: 31693340 DOI: 10.1021/acscombsci.9b00147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When isolating binders from yeast displayed combinatorial libraries, a soluble, recombinantly expressed form of the target protein is typically utilized. As an alternative, we describe the use of target proteins displayed as surface fusions on magnetized yeast cells. In our strategy, the target protein is coexpressed on the yeast surface with an iron oxide binding protein; incubation of these yeast cells with iron oxide nanoparticles results in their magnetization. Subsequently, binder cells that interact with the magnetized target cells can be isolated using a magnet. Using a known binder-target pair with modest binding affinity (KD ≈ 400 nM), we showed that a binder present at low frequency (1 in 105) could be enriched more than 100-fold, in a single round of screening, suggesting feasibility of screening combinatorial libraries. Subsequently, we screened yeast display libraries of Sso7d and nanobody variants against yeast displayed targets to isolate binders specific to the cytosolic domain of the mitochondrial membrane protein TOM22 (KD ≈ 272-1934 nM) and the extracellular domain of the c-Kit receptor (KD ≈ 93 to KD > 2000 nM). Additional studies showed that the TOM22 binders identified using this approach could be used for the enrichment of mitochondria from cell lysates, thereby confirming binding to the native mitochondrial protein. The ease of expressing a membrane protein or a domain thereof as a yeast cell surface fusion-in contrast to recombinant soluble expression-makes the use of yeast-displayed targets particularly attractive. Therefore, we expect the use of magnetized yeast cell targets will enable efficient isolation of binders to membrane proteins.
Collapse
|
18
|
Klesmith JR, Wu L, Lobb RR, Rennert PD, Hackel BJ. Fine Epitope Mapping of the CD19 Extracellular Domain Promotes Design. Biochemistry 2019; 58:4869-4881. [PMID: 31702909 DOI: 10.1021/acs.biochem.9b00808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The B-cell surface protein CD19 is present throughout the cell life cycle and is uniformly expressed in leukemias, making it a target for chimeric antigen receptor engineered immune cell therapy. Identifying the sequence dependence of the binding of CD19 to antibodies empowers fundamental study and more tailored development of CD19-targeted therapeutics. To identify the antibody-binding epitopes on CD19, we screened a comprehensive single-site saturation mutation library of the human CD19 extracellular domain to identify mutations detrimental to binding FMC63-the dominant CD19 antibody used in chimeric antigen receptor development-as well as 4G7-2E3 and 3B10, which have been used in various types of CD19 research and development. All three antibodies had partially overlapping, yet distinct, epitopes near the published epitope of antibody B43. The FMC63 conformational epitope spans spatially adjacent, but genetically distant, loops in exons 3 and 4. The 3B10 epitope is a linear peptide sequence that binds CD19 with 440 pM affinity. Along with their primary goal of epitope mapping, the mutational tolerance data also empowered additional CD19 variant design and analysis. A designed CD19 variant with all N-linked glycosylation sites removed successfully bound antibody in the yeast display context, which provides a lead for aglycosylated applications. Screening for thermally stable variants identified mutations to guide further CD19 stabilization for fusion protein applications and revealed evolutionary affinity-stability trade-offs. These fundamental insights into CD19 sequence-function relationships enhance our understanding of antibody-mediated CD19-targeted therapeutics.
Collapse
Affiliation(s)
- Justin R Klesmith
- Department of Chemical Engineering and Materials Science , University of Minnesota-Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Lan Wu
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Roy R Lobb
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Paul D Rennert
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science , University of Minnesota-Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
19
|
Klesmith JR, Su L, Wu L, Schrack IA, Dufort FJ, Birt A, Ambrose C, Hackel BJ, Lobb RR, Rennert PD. Retargeting CD19 Chimeric Antigen Receptor T Cells via Engineered CD19-Fusion Proteins. Mol Pharm 2019; 16:3544-3558. [PMID: 31242389 DOI: 10.1021/acs.molpharmaceut.9b00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD19-targeted chimeric antigen receptor (CAR) T-cells (CAR19s) show remarkable efficacy in the treatment of relapsed/refractory acute lymphocytic leukemia and Non-Hodgkin's lymphoma. However, the use of CAR T-cell therapy against CD19-negative hematological cancers and solid tumors has been challenging. We propose CD19-fusion proteins (CD19-FPs) to leverage the benefits of CAR19s while retargeting this validated cellular therapy to alternative tumor antigens. We demonstrate the ability of a fusion of CD19 extracellular domain (ECD) and a human epidermal growth factor receptor 2 (HER2) single-chain antibody fragment to retarget CAR19s to kill HER2+ CD19- tumor cells. To enhance the modularity of this technology, we engineered a more robust CD19 ECD via deep mutational scanning with yeast display and flow cytometric selections for improved protease resistance and anti-CD19 antibody binding. These enhanced CD19 ECDs significantly increase, and in some cases recover, fusion protein expression while maintaining target antigen affinity. Importantly, CD19-FPs retarget CAR19s to kill tumor cells expressing multiple distinct antigens, including HER2, CD20, EGFR, BCMA, and Clec12A as N- or C-terminal fusions and linked to both antibody fragments and fibronectin ligands. This study provides fundamental insights into CD19 sequence-function relationships and defines a flexible and modular platform to retarget CAR19s to any tumor antigen.
Collapse
Affiliation(s)
- Justin R Klesmith
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Lihe Su
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Lan Wu
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Ian A Schrack
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Fay J Dufort
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Alyssa Birt
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Christine Ambrose
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Roy R Lobb
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Paul D Rennert
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| |
Collapse
|
20
|
Validation and Stabilization of a Prophage Lysin of Clostridium perfringens by Using Yeast Surface Display and Coevolutionary Models. Appl Environ Microbiol 2019; 85:AEM.00054-19. [PMID: 30850429 DOI: 10.1128/aem.00054-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/27/2019] [Indexed: 01/15/2023] Open
Abstract
Bacteriophage lysins are compelling antimicrobial proteins whose biotechnological utility and evolvability would be aided by elevated stability. Lysin catalytic domains, which evolved as modular entities distinct from cell wall binding domains, can be classified into one of several families with highly conserved structure and function, many of which contain thousands of annotated homologous sequences. Motivated by the quality of these evolutionary data, the performance of generative protein models incorporating coevolutionary information was analyzed to predict the stability of variants in a collection of 9,749 multimutants across 10 libraries diversified at different regions of a putative lysin from a prophage region of a Clostridium perfringens genome. Protein stability was assessed via a yeast surface display assay with accompanying high-throughput sequencing. Statistical fitness of mutant sequences, derived from second-order Potts models inferred with different levels of sequence homolog information, was predictive of experimental stability with areas under the curve (AUCs) ranging from 0.78 to 0.85. To extract an experimentally derived model of stability, a logistic model with site-wise score contributions was regressed on the collection of multimutants. This achieved a cross-validated classification performance of 0.95. Using this experimentally derived model, 5 designs incorporating 5 or 6 mutations from multiple libraries were constructed. All designs retained enzymatic activity, with 4 of 5 increasing the melting temperature and with the highest-performing design achieving an improvement of +4°C.IMPORTANCE Bacteriophage lysins exhibit high specificity and activity toward host bacteria with which the phage coevolved. These properties of lysins make them attractive for use as antimicrobials. Although there has been significant effort to develop platforms for rapid lysin engineering, there have been numerous shortcomings when pursuing the ultrahigh throughput necessary for the discovery of rare combinations of mutations to improve performance. In addition to validation of a putative lysin and stabilization thereof, the experimental and computational methods presented here offer a new avenue for improving protein stability and are easily scalable to analysis of tens of millions of mutations in single experiments.
Collapse
|
21
|
Julian MC, Rabia LA, Desai AA, Arsiwala A, Gerson JE, Paulson HL, Kane RS, Tessier PM. Nature-inspired design and evolution of anti-amyloid antibodies. J Biol Chem 2019; 294:8438-8451. [PMID: 30918024 DOI: 10.1074/jbc.ra118.004731] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Antibodies that recognize amyloidogenic aggregates with high conformational and sequence specificity are important for detecting and potentially treating a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, these types of antibodies are challenging to generate because of the large size, hydrophobicity, and heterogeneity of protein aggregates. To address this challenge, we developed a method for generating antibodies specific for amyloid aggregates. First, we grafted amyloidogenic peptide segments from the target polypeptide [Alzheimer's amyloid-β (Aβ) peptide] into the complementarity-determining regions (CDRs) of a stable antibody scaffold. Next, we diversified the grafted and neighboring CDR sites using focused mutagenesis to sample each WT or grafted residue, as well as one to five of the most commonly occurring amino acids at each site in human antibodies. Finally, we displayed these antibody libraries on the surface of yeast cells and selected antibodies that strongly recognize Aβ-amyloid fibrils and only weakly recognize soluble Aβ. We found that this approach enables the generation of monovalent and bivalent antibodies with nanomolar affinity for Aβ fibrils. These antibodies display high conformational and sequence specificity as well as low levels of nonspecific binding and recognize a conformational epitope at the extreme N terminus of human Aβ. We expect that this systematic approach will be useful for generating antibodies with conformational and sequence specificity against a wide range of peptide and protein aggregates associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Mark C Julian
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Lilia A Rabia
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109; Department of Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109; Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Alec A Desai
- Department of Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109; Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Ammar Arsiwala
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Julia E Gerson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109; Department of Protein Folding Disease Initiative, University of Michigan, Ann Arbor, Michigan 48109; Department of Michigan Alzheimer's Disease Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Peter M Tessier
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109; Department of Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109; Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109; Department of Protein Folding Disease Initiative, University of Michigan, Ann Arbor, Michigan 48109; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
22
|
Stern LA, Lown PS, Kobe AC, Abou-Elkacem L, Willmann JK, Hackel BJ. Cellular-Based Selections Aid Yeast-Display Discovery of Genuine Cell-Binding Ligands: Targeting Oncology Vascular Biomarker CD276. ACS COMBINATORIAL SCIENCE 2019; 21:207-222. [PMID: 30620189 PMCID: PMC6411437 DOI: 10.1021/acscombsci.8b00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Yeast surface display is a proven tool for the selection and evolution of ligands with novel binding activity. Selections from yeast surface display libraries against transmembrane targets are generally carried out using recombinant soluble extracellular domains. Unfortunately, these molecules may not be good models of their true, membrane-bound form for a variety of reasons. Such selection campaigns often yield ligands that bind a recombinant target but not target-expressing cells or tissues. Advances in cell-based selections with yeast surface display may aid the frequency of evolving ligands that do bind true, membrane-bound antigens. This study aims to evaluate ligand selection strategies using both soluble target-driven and cellular selection techniques to determine which methods yield translatable ligands most efficiently and generate novel binders against CD276 (B7-H3) and Thy1, two promising tumor vasculature targets. Out of four ligand selection campaigns carried out using only soluble extracellular domains, only an affibody library sorted against CD276 yielded translatable binders. In contrast, fibronectin domains against CD276 and affibodies against CD276 were discovered in campaigns that either combined soluble target and cellular selection methods or used cellular selection methods alone. A high frequency of non target-specific ligands discovered from the use of cellular selection methods alone motivated the development of a depletion scheme using disadhered, antigen-negative mammalian cells as a blocking agent. Affinity maturation of CD276-binding affibodies by error-prone PCR and helix walking resulted in strong, specific cellular CD276 affinity ( Kd = 0.9 ± 0.6 nM). Collectively, these results motivate the use of cellular selections in tandem with recombinant selections and introduce promising affibody molecules specific to CD276 for further applications.
Collapse
Affiliation(s)
- Lawrence A. Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN
| | - Patrick S. Lown
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN
| | - Alexandra C. Kobe
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN
| | | | | | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN
| |
Collapse
|
23
|
Case BA, Kruziki MA, Johnson SM, Hackel BJ. Engineered Charge Redistribution of Gp2 Proteins through Guided Diversity for Improved PET Imaging of Epidermal Growth Factor Receptor. Bioconjug Chem 2018; 29:1646-1658. [PMID: 29579383 PMCID: PMC6051758 DOI: 10.1021/acs.bioconjchem.8b00144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Gp2 domain is a protein scaffold for synthetic ligand engineering. However, the native protein function results in a heterogeneous distribution of charge on the conserved surface, which may hinder further development and utility. We aim to modulate charge, without diminishing function, which is challenging in small proteins where each mutation is a significant fraction of protein structure. We constructed rationally guided combinatorial libraries with charge-neutralizing or charge-flipping mutations and sorted them, via yeast display and flow cytometry, for stability and target binding. Deep sequencing of functional variants revealed effective mutations both in clone-dependent contexts and broadly across binders to epidermal growth factor receptor (EGFR), insulin receptor, and immunoglobulin G. Functional mutants averaged 4.3 charge neutralizing mutations per domain while maintaining net negative charge. We evolved an EGFR-targeted Gp2 mutant that reduced charge density by 33%, maintained net charge, and improved charge distribution homogeneity while elevating thermal stability ( Tm = 87 ± 1 °C), improving binding specificity, and maintaining affinity ( Kd = 8.8 ± 0.6 nM). This molecule was conjugated with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid for 64Cu chelation and evaluated for physiological distribution in mice with xenografted A431 (EGFRhigh) and MDA-MB-435 (EGFRlow) tumors. Excised tissue gamma counting and positron emission tomography/computed tomography imaging revealed good EGFRhigh tumor signal (4.7 ± 0.5%ID/g) at 2 h post-injection and molecular specificity evidenced by low uptake in EGFRlow tumors (0.6 ± 0.1%ID/g, significantly lower than for non-charge-modified Gp2, p = 0.01). These results provide charge mutations for an improved Gp2 framework, validate an effective approach to charge engineering, and advance performance of physiological EGFR targeting for molecular imaging.
Collapse
Affiliation(s)
- Brett A. Case
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Max A. Kruziki
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Sadie M. Johnson
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Benjamin J. Hackel
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| |
Collapse
|
24
|
Sirois AR, Deny DA, Baierl SR, George KS, Moore SJ. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding. PLoS One 2018; 13:e0197029. [PMID: 29738555 PMCID: PMC5940182 DOI: 10.1371/journal.pone.0197029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Allison R. Sirois
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
| | - Daniela A. Deny
- Department of Biochemistry, Smith College, Northampton, Massachusetts, United States of America
| | - Samantha R. Baierl
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
| | - Katia S. George
- Department of Biochemistry, Smith College, Northampton, Massachusetts, United States of America
| | - Sarah J. Moore
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Case BA, Kruziki MA, Stern LA, Hackel BJ. Evaluation of affibody charge modification identified by synthetic consensus design in molecular PET imaging of epidermal growth factor receptor. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2018; 3:171-182. [PMID: 31467687 PMCID: PMC6715147 DOI: 10.1039/c7me00095b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor overexpression of epidermal growth factor receptor (EGFR) correlates to therapeutic response in select patient populations. Thus, molecular positron emission tomography (PET) imaging of EGFR could stratify responders versus non-responders. We previously demonstrated effectiveness of a "synthetic consensus" design principle to identify six neutralizing mutations within a 58-amino acid EGFR-targeted affibody domain. Herein, we extend the approach to identify additional neutralized variants that vary net charge from -2 to either -4 or +4 while retaining high affinity (1.6 ± 1.2 nM and 2.5 ± 0.7 nM), specific binding to EGFR, secondary structure, and stability (Tm = 68 °C and 59 °C). We radiolabeled the resultant collection of five charge variants with 64Cu and evaluated PET imaging performance in murine models with subcutaneously xenografted EGFRhigh and EGFRlow tumors. All variants exhibited good EGFRhigh tumor imaging as early as 1 h, with EA35S (+3/-5) achieving 7.7 ± 1.4 %ID/g tumor at 4 h with 1.5 ± 0.3%ID/g EGFRlow tumor, 34 ± 5 tumor:muscle and 12 ± 3 tumor:blood ratios. The positively charged EA62S mutant (+6/-2) exhibited 2.2-3.3-fold higher liver signal than the other variants (p<0.01). The EA68 variant with higher charge density was more stable to human and mouse serum than neutralized variants. In a comparison of radiometal chelators, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) exhibited superior physiological specificity to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In total, these studies comparatively evaluated a set of EGFR-targeted affibodies varying in net charge and charge density, which revealed functional variations that are useful in engineering an ideal probe for translational studies.
Collapse
Affiliation(s)
- Brett A Case
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Max A Kruziki
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Lawrence A Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
26
|
Cruz-Teran CA, Tiruthani K, Mischler A, Rao BM. Inefficient Ribosomal Skipping Enables Simultaneous Secretion and Display of Proteins in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:2096-2107. [PMID: 28805373 PMCID: PMC5905331 DOI: 10.1021/acssynbio.7b00144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The need for recombinant expression of soluble protein slows the validation of engineered proteins isolated from combinatorial libraries and limits the number of protein variants evaluated. To overcome this bottleneck, we describe a system for simultaneous cell surface display and soluble secretion of proteins in Saccharomyces cerevisiae based on inefficient ribosomal skipping. Ribosomal skipping mediated by "self-cleaving" 2A peptides produces two proteins from a single open reading frame. Incorporation of the F2A peptide sequence-with ∼50% efficiency of ribosomal skipping-between the protein of interest and the yeast cell wall protein Aga2 results in simultaneous expression of both the solubly secreted protein and the protein-Aga2 fusion that is tethered to the yeast cell surface. We show that binding proteins derived from the Sso7d scaffold and the homodimeric enzyme glucose oxidase can be simultaneously secreted solubly and expressed as yeast cell surface fusions using the F2A-based system. Furthermore, a combinatorial library of Sso7d mutants can be screened to isolate binders with higher affinity for a model target (lysozyme), and the pool of higher affinity binders can be characterized in soluble form. Significantly, we show that both N- and C-terminal fusions to Aga2 can be simultaneously secreted solubly and displayed on the cell surface; this is particularly advantageous because protein functionality can be affected by the specific position of Aga2 in the protein fusion. We expect that the F2A-based yeast surface display and secretion system will be a useful tool for protein engineering and enable efficient characterization of individual clones isolated from combinatorial libraries.
Collapse
Affiliation(s)
| | | | - Adam Mischler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| |
Collapse
|
27
|
Stern LA, Csizmar CM, Woldring DR, Wagner CR, Hackel BJ. Titratable Avidity Reduction Enhances Affinity Discrimination in Mammalian Cellular Selections of Yeast-Displayed Ligands. ACS COMBINATORIAL SCIENCE 2017; 19:315-323. [PMID: 28322543 DOI: 10.1021/acscombsci.6b00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yeast surface display selections against mammalian cell monolayers have proven effective in isolating proteins with novel binding activity. Recent advances in this technique allow for the recovery of clones with even micromolar binding affinities. However, no efficient method has been shown for affinity-based selection in this context. This study demonstrates the effectiveness of titratable avidity reduction using dithiothreitol to achieve this goal. A series of epidermal growth factor receptor binding fibronectin domains with a range of affinities are used to quantitatively identify the number of ligands per yeast cell that yield the strongest selectivity between strong, moderate, and weak affinities. Notably, reduction of ligand display to 3,000-6,000 ligands per yeast cell of a 2 nM binder yields 16-fold better selectivity than that to a 17 nM binder. These lessons are applied to affinity maturation of an EpCAM-binding fibronectin population, yielding an enriched pool of ligands with significantly stronger affinity than that of an analogous pool sorted by standard cellular selection methods. Collectively, this study offers a facile approach for affinity selection of yeast-displayed ligands against full-length cellular targets and demonstrates the effectiveness of this method by generating EpCAM-binding ligands that are promising for further applications.
Collapse
Affiliation(s)
- Lawrence A. Stern
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Clifford M. Csizmar
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Daniel R. Woldring
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Carston R. Wagner
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|