1
|
Wild M, Takors R. Mini Bubble Columns for Miniaturizing Scale-Down. Eng Life Sci 2025; 25:e202400051. [PMID: 39990768 PMCID: PMC11842284 DOI: 10.1002/elsc.202400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 02/25/2025] Open
Abstract
The successful scale-up of biotechnological processes from laboratory to industrial scale is crucial for translating innovation to practice. Scale-down simulators have emerged as indispensable tools in this endeavor, enabling the evaluation of potential hosts' adaptability to the dynamic conditions encountered in large-scale fermenters. By simulating these real-world scenarios, scale-down simulators facilitate more accurate estimations of host productivity, thereby improving the process of selecting optimal strains for industrial production. Conventional scale-down systems for detailed intracellular analysis necessitate an elaborate setup comprising interconnected lab-scale reactors such as stirred tank reactors (STRs) and plug-flow reactors (PFRs), often proving time-consuming and resource-intensive. This work introduces a miniaturized bubble column reactor setup (60 mL working volume), enabling individual and parallel carbon-limited chemostat fermentations, offering a more efficient and streamlined approach. The industrially relevant organism Escherichia coli, chosen as a model organism, is continuously grown and subjected to carbon starvation for 150 s, followed by a return to carbon excess for another 150 s. The cellular response is characterized by the accumulation of the alarmone guanosine pentaphosphate (ppGpp) accompanied by a significant reduction in energy charge, from 0.8 to 0.7, which is rapidly replenished upon reintroduction of carbon availability. Transcriptomic analysis reveals a two-phase response pattern, with over 200 genes upregulated and downregulated. The initial phase is dominated by the CRP-cAMP- and ppGpp-mediated response to carbon limitation, followed by a shift to stationary phase-inducing gene expression under the control of stress sigma factors. The system's validity is confirmed through a thorough comparison with a conventional STR/PFR setup. The analysis reveals the potential of the system to effectively reproduce data gathered from conventional STR/PFR setups, showcasing its potential use as a scale-down simulator integrated in the process of strain development.
Collapse
Affiliation(s)
- Moritz Wild
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
2
|
Bush X, Fratz‐Berilla EJ, Kohnhorst CL, King R, Agarabi C, Powers DN, Trunfio N. Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality. Biotechnol Bioeng 2025; 122:298-305. [PMID: 39462977 PMCID: PMC11718427 DOI: 10.1002/bit.28873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.
Collapse
Affiliation(s)
- Xin Bush
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VISilver SpringMarylandUSA
| | - Erica J. Fratz‐Berilla
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VISilver SpringMarylandUSA
| | - Casey L. Kohnhorst
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research IIISilver SpringMarylandUSA
| | - Roberta King
- Department of Biomedical and Pharmaceutical Sciences, College of PharmacyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Cyrus Agarabi
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality ResearchImmediate OfficeSilver SpringMarylandUSA
| | - David N. Powers
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VISilver SpringMarylandUSA
| | - Nicholas Trunfio
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VISilver SpringMarylandUSA
| |
Collapse
|
3
|
Zha J, Zhao Z, Xiao Z, Eng T, Mukhopadhyay A, Koffas MA, Tang YJ. Biosystem design of Corynebacterium glutamicum for bioproduction. Curr Opin Biotechnol 2023; 79:102870. [PMID: 36549106 DOI: 10.1016/j.copbio.2022.102870] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Corynebacterium glutamicum, a natural glutamate-producing bacterium adopted for industrial production of amino acids, has been extensively explored recently for high-level biosynthesis of amino acid derivatives, bulk chemicals such as organic acids and short-chain alcohols, aromatics, and natural products, including polyphenols and terpenoids. Here, we review the recent advances with a focus on biosystem design principles, metabolic characterization and modeling, omics analysis, utilization of nonmodel feedstock, emerging CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools for Corynebacterium strain engineering, biosensors, and novel strains of C. glutamicum. Future research directions for developing C. glutamicum cell factories are also discussed.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhen Zhao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhengyang Xiao
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, MO 63130, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mattheos Ag Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, MO 63130, USA.
| |
Collapse
|
4
|
Kiefer D, Tadele LR, Lilge L, Henkel M, Hausmann R. High-level recombinant protein production with Corynebacterium glutamicum using acetate as carbon source. Microb Biotechnol 2022; 15:2744-2757. [PMID: 36178056 PMCID: PMC9618323 DOI: 10.1111/1751-7915.14138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, biotechnological conversion of the alternative carbon source acetate has attracted much attention. So far, acetate has been mainly used for microbial production of bioproducts with bulk applications. In this study, we aimed to investigate the potential of acetate as carbon source for heterologous protein production using the acetate-utilizing platform organism Corynebacterium glutamicum. For this purpose, expression of model protein eYFP with the promoter systems T7lac and tac was characterized during growth of C. glutamicum on acetate as sole carbon source. The results indicated a 3.3-fold higher fluorescence level for acetate-based eYFP production with T7 expression strain MB001(DE3) pMKEx2-eyfp compared to MB001 pEKEx2-eyfp. Interestingly, comparative eyfp expression studies on acetate or glucose revealed an up to 83% higher biomass-specific production for T7 RNAP-dependent eYFP production using acetate as carbon source. Furthermore, high-level protein accumulation on acetate was demonstrated for the first time in a high cell density cultivation process with pH-coupled online feeding control, resulting in a final protein titer of 2.7 g/L and product yield of 4 g per 100 g cell dry weight. This study presents a first proof of concept for efficient microbial upgrading of potentially low-cost acetate into high-value bioproducts, such as recombinant proteins.
Collapse
Affiliation(s)
- Dirk Kiefer
- Department of Bioprocess EngineeringInstitute of Food Science and Biotechnology, University of HohenheimStuttgartGermany
| | - Lea Rahel Tadele
- Department of Bioprocess EngineeringInstitute of Food Science and Biotechnology, University of HohenheimStuttgartGermany
| | - Lars Lilge
- Department of Bioprocess EngineeringInstitute of Food Science and Biotechnology, University of HohenheimStuttgartGermany
| | - Marius Henkel
- Cellular AgricultureTUM School of Life Sciences, Technical University of MunichFreisingGermany
| | - Rudolf Hausmann
- Department of Bioprocess EngineeringInstitute of Food Science and Biotechnology, University of HohenheimStuttgartGermany
| |
Collapse
|
5
|
Täuber S, Blöbaum L, Steier V, Oldiges M, Grünberger A. Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating pH values. Biotechnol Bioeng 2022; 119:3194-3209. [PMID: 35950295 DOI: 10.1002/bit.28208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022]
Abstract
In large-scale bioreactors, gradients in cultivation parameter such as oxygen, substrate and pH result in fluctuating cell environments. pH fluctuations were identified as a critical parameter for bioprocess performance. Traditionally, scale-down systems at the laboratory scale are used to analyze the effects of fluctuating pH values on strain and thus process performance. Here, we demonstrate the application of dynamic microfluidic single-cell cultivation (dMSCC) as a novel scale-down system for the characterization of Corynebacterium glutamicum growth using oscillating pH conditions as a model stress-factor. A detailed comparison between two-compartment reactor (two-CR) scale-down experiments and dMSCC was performed for one specific pH oscillation between reference pH 7 (~ 8 min) and disturbed pH 6 (~2 min). Similar reductions in growth rates were observed in both systems (dMSCC 21% and two-CR 27%) compared to undisturbed cultivation at pH 7. Afterwards, systematic experiments at symmetric and asymmetric pH oscillations between pH ranges of 4-6 and 8-11 and different intervals from 1 minute to 20 minutes, were performed to demonstrate the unique application range and throughput of the dMSCC system. Finally, the strength of the dMSCC application was demonstrated by mimicking fluctuating environmental conditions of a putative large-scale bioprocesse, which is difficult to conduct using two-CRs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sarah Täuber
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Luisa Blöbaum
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Valentin Steier
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
6
|
Kawaguchi H, Hasunuma T, Ohnishi Y, Sazuka T, Kondo A, Ogino C. Enhanced production of γ-amino acid 3-amino-4-hydroxybenzoic acid by recombinant Corynebacterium glutamicum under oxygen limitation. Microb Cell Fact 2021; 20:228. [PMID: 34949178 PMCID: PMC8697445 DOI: 10.1186/s12934-021-01714-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics. Results Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture. Conclusions Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01714-z.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chiaki Ogino
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
7
|
Labib M, Görtz J, Brüsseler C, Kallscheuer N, Gätgens J, Jupke A, Marienhagen J, Noack S. Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum. Biotechnol Bioeng 2021; 118:4414-4427. [PMID: 34343343 DOI: 10.1002/bit.27909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022]
Abstract
3,4-Dihydroxybenzoate (protocatechuate, PCA) is a phenolic compound naturally found in edible vegetables and medicinal herbs. PCA is of high interest in the chemical industry and has wide potential for pharmaceutical applications. We designed and constructed a novel Corynebacterium glutamicum strain to enable the efficient utilization of d-xylose for microbial production of PCA. Shake flask cultivation of the engineered strain showed a maximum PCA titer of 62.1 ± 12.1 mM (9.6 ± 1.9 g L-1 ) from d-xylose as the primary carbon and energy source. The corresponding yield was 0.33 C-mol PCA per C-mol d-xylose, which corresponds to 38% of the maximum theoretical yield. Under growth-decoupled bioreactor conditions, a comparable PCA titer and a total amount of 16.5 ± 1.1 g PCA could be achieved when d-glucose and d-xylose were combined as orthogonal carbon substrates for biocatalyst provision and product synthesis, respectively. Downstream processing of PCA was realized via electrochemically induced crystallization by taking advantage of the pH-dependent properties of PCA. This resulted in a maximum final purity of 95.4%. The established PCA production process represents a highly sustainable approach, which will serve as a blueprint for the bio-based production of other hydroxybenzoic acids from alternative sugar feedstocks.
Collapse
Affiliation(s)
- Mohamed Labib
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jonas Görtz
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Aachener Verfahrenstechnik - Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Christian Brüsseler
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nicolai Kallscheuer
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Jupke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Aachener Verfahrenstechnik - Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
8
|
Zelle E, Pfelzer N, Oldiges M, Koch-Koerfges A, Bott M, Nöh K, Wiechert W. An energetic profile of Corynebacterium glutamicum underpinned by measured biomass yield on ATP. Metab Eng 2021; 65:66-78. [PMID: 33722651 DOI: 10.1016/j.ymben.2021.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
The supply and usage of energetic cofactors in metabolism is a central concern for systems metabolic engineering, particularly in case of energy intensive products. One of the most important parameters for systems wide balancing of energetic cofactors is the ATP requirement for biomass formation YATP/Biomass. Despite its fundamental importance, YATP/Biomass values for non-fermentative organisms are still rough estimates deduced from theoretical considerations. For the first time, we present an approach for the experimental determination of YATP/Biomass using comparative 13C metabolic flux analysis (13C MFA) of a wild type strain and an ATP synthase knockout mutant. We show that the energetic profile of a cell can then be deduced from a genome wide stoichiometric model and experimental maintenance data. Particularly, the contributions of substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP) to ATP generation become available which enables the overall energetic efficiency of a cell to be characterized. As a model organism, the industrial platform organism Corynebacterium glutamicum is used. C. glutamicum uses a respiratory type of energy metabolism, implying that ATP can be synthesized either by SLP or by ETP with the membrane-bound F1FO-ATP synthase using the proton motive force (pmf) as driving force. The presence of two terminal oxidases, which differ in their proton translocation efficiency by a factor of three, further complicates energy balancing for this organism. By integration of experimental data and network models, we show that in the wild type SLP and ETP contribute equally to ATP generation. Thus, the role of ETP in respiring bacteria may have been overrated in the past. Remarkably, in the genome wide setting 65% of the pmf is actually not used for ATP synthesis. However, it turns out that, compared to other organisms C. glutamicum still uses its energy budget rather efficiently.
Collapse
Affiliation(s)
- E Zelle
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - N Pfelzer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - M Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - A Koch-Koerfges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - M Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - K Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - W Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany.
| |
Collapse
|
9
|
Understanding gradients in industrial bioreactors. Biotechnol Adv 2020; 46:107660. [PMID: 33221379 DOI: 10.1016/j.biotechadv.2020.107660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/22/2020] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
Gradients in industrial bioreactors have attracted substantial research attention since exposure to fluctuating environmental conditions has been shown to lead to changes in the metabolome, transcriptome as well as population heterogeneity in industrially relevant microorganisms. Such changes have also been found to impact key process parameters like the yield on substrate and the productivity. Hence, understanding gradients is important from both the academic and industrial perspectives. In this review the causes of gradients are outlined, along with their impact on microbial physiology. Quantifying the impact of gradients requires a detailed understanding of both fluid flow inside industrial equipment and microbial physiology. This review critically examines approaches used to investigate gradients including large-scale experimental work, computational methods and scale-down approaches. Avenues for future work have been highlighted, particularly the need for further coordinated development of both in silico and experimental tools which can be used to further the current understanding of gradients in industrial equipment.
Collapse
|
10
|
Hemmerich J, Labib M, Steffens C, Reich SJ, Weiske M, Baumgart M, Rückert C, Ruwe M, Siebert D, Wendisch VF, Kalinowski J, Wiechert W, Oldiges M. Screening of a genome-reduced Corynebacterium glutamicum strain library for improved heterologous cutinase secretion. Microb Biotechnol 2020; 13:2020-2031. [PMID: 32893457 PMCID: PMC7533341 DOI: 10.1111/1751-7915.13660] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from Fusarium solani pisi in the industrial workhorse Corynebacterium glutamicum. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from Bacillus subtilis. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and rrnC-cg3298 could not have been inferred a priori. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a 'high-performance' strain from batch screening into a 'low-performance' strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of C. glutamicum to both genomic deletions and different bioprocess conditions.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
| | - Mohamed Labib
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Carmen Steffens
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Sebastian J. Reich
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Present address:
Institute of Microbiology and BiotechnologyUlm UniversityUlm89081Germany
| | - Marc Weiske
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Meike Baumgart
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Christian Rückert
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Matthias Ruwe
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Daniel Siebert
- Faculty of Biology, Chair of Genetics of ProkaryotesBielefeld UniversityBielefeld33615Germany
- Present address:
Microbial BiotechnologyCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubing94315Germany
| | - Volker F. Wendisch
- Faculty of Biology, Chair of Genetics of ProkaryotesBielefeld UniversityBielefeld33615Germany
| | - Jörn Kalinowski
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Wolfgang Wiechert
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachen52074Germany
| | - Marco Oldiges
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52074Germany
| |
Collapse
|
11
|
Wehrs M, Thompson MG, Banerjee D, Prahl JP, Morella NM, Barcelos CA, Moon J, Costello Z, Keasling JD, Shih PM, Tanjore D, Mukhopadhyay A. Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microb Cell Fact 2020; 19:167. [PMID: 32811554 PMCID: PMC7437010 DOI: 10.1186/s12934-020-01423-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial conditions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information to better understand potential implications of large-scale cultivation on strain performance. This study assesses the feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance. Results We find that mutant population diversity is maintained through multiple seed trains, enabling large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis of beta diversity between all samples revealed significant population divergence over time and showed feed specific consequences of population structure. Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast deletion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. Conclusions Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions and to understand critical stages of a scale-up process where variability emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Mitchell G Thompson
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Deepanwita Banerjee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Norma M Morella
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Carolina A Barcelos
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jadie Moon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Zak Costello
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Energy Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2970, Horsholm, Denmark.,Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Patrick M Shih
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
12
|
Wright NR, Wulff T, Palmqvist EA, Jørgensen TR, Workman CT, Sonnenschein N, Rønnest NP, Herrgård MJ. Fluctuations in glucose availability prevent global proteome changes and physiological transition during prolonged chemostat cultivations of
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:2074-2088. [DOI: 10.1002/bit.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Naia R. Wright
- Novo Nordisk A/S Bagsværd Denmark
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
| | | | - Thomas R. Jørgensen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
| | - Christopher T. Workman
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | | | - Markus J. Herrgård
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- BioInnovation Institute København N Denmark
| |
Collapse
|
13
|
Paul K, Herwig C. Scale-down simulators for mammalian cell culture as tools to access the impact of inhomogeneities occurring in large-scale bioreactors. Eng Life Sci 2020; 20:197-204. [PMID: 32874183 PMCID: PMC7447876 DOI: 10.1002/elsc.201900162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
During the scale-up of a bioprocess, not all characteristics of the process can be kept constant throughout the different scales. This typically results in increased mixing times with increasing reactor volumes. The poor mixing leads in turn to the formation of concentration gradients throughout the reactor and exposes cells to varying external conditions based on their location in the bioreactor. This can affect process performance and complicate process scale-up. Scale-down simulators, which aim at replicating the large-scale environment, expose the cells to changing environmental conditions. This has the potential to reveal adaptation mechanisms, which cells are using to adjust to rapidly fluctuating environmental conditions and can identify possible root causes for difficulties maintaining similar process performance at different scales. This understanding is of utmost importance in process validation. Additionally, these simulators also have the potential to be used for selecting cells, which are most robust when encountering changing extracellular conditions. The aim of this review is to summarize recent work in this interesting and promising area with the focus on mammalian bioprocesses, since microbial processes have been extensively reviewed.
Collapse
Affiliation(s)
- Katrin Paul
- Institute of Chemical, Environmental and Bioscience EngineeringViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesViennaAustria
| | - Christoph Herwig
- Institute of Chemical, Environmental and Bioscience EngineeringViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesViennaAustria
| |
Collapse
|
14
|
Olughu W, Nienow A, Hewitt C, Rielly C. Scale-down studies for the scale-up of a recombinant Corynebacterium glutamicum fed-batch fermentation: loss of homogeneity leads to lower levels of cadaverine production. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2020; 95:675-685. [PMID: 32139953 PMCID: PMC7043379 DOI: 10.1002/jctb.6248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The loss of efficiency and performance of bioprocesses on scale-up is well known, but not fully understood. This work addresses this problem, by studying the effect of some fermentation gradients (pH, glucose and oxygen) that occur at the larger scale in a bench-scale two-compartment reactor [plug flow reactor (PFR) + stirred tank reactor (STR)] using the cadaverine-producing recombinant Corynebacterium glutamicum DM1945 Δact3 Ptuf-ldcC_OPT. The new scale-down strategy developed here studied the effect of increasing the magnitude of fermentation gradients by considering not only the average cell residence time in the PFR (τ PFR), but also the mean frequency at which the bacterial cells entered the PFR (f m) section of the two-compartment reactor. RESULTS On implementing this strategy the cadaverine production decreased on average by 26%, 49% and 59% when the τ PFR was increased from 1 to 2 min and then 5 min respectively compared to the control fermentation. The carbon dioxide productivity was highest (3.1-fold that of the control) at a τ PFR of 5 min, but no losses were observed in biomass production. However, the population of viable but non-culturable cells increased as the magnitude of fermentation gradients was increased. The new scale-down approach was also shown to have a bigger impact on fermentation performance than the traditional one. CONCLUSION This study demonstrated that C. glutamicum DM1945 Δact3 Ptuf-ldcC_OPT physiological response was a function of the magnitude of fermentation gradients simulated. The adaptations of a bacterial cell within a heterogeneous environment ultimately result in losses in fermentation productivity as observed here. © 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Williams Olughu
- Department of Chemical EngineeringLoughborough UniversityLoughboroughUK
- Ipsen Biopharma LtdWrexhamUK
| | - Alvin Nienow
- Department of Chemical EngineeringLoughborough UniversityLoughboroughUK
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- School of Life and Health SciencesAston UniversityBirminghamUK
| | - Chris Hewitt
- School of Life and Health SciencesAston UniversityBirminghamUK
| | - Chris Rielly
- Department of Chemical EngineeringLoughborough UniversityLoughboroughUK
| |
Collapse
|
15
|
Morschett H, Jansen R, Neuendorf C, Moch M, Wiechert W, Oldiges M. Parallelized microscale fed-batch cultivation in online-monitored microtiter plates: implications of media composition and feed strategies for process design and performance. J Ind Microbiol Biotechnol 2020; 47:35-47. [PMID: 31673873 PMCID: PMC6971147 DOI: 10.1007/s10295-019-02243-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
Limited throughput represents a substantial drawback during bioprocess development. In recent years, several commercial microbioreactor systems have emerged featuring parallelized experimentation with optical monitoring. However, many devices remain limited to batch mode and do not represent the fed-batch strategy typically applied on an industrial scale. A workflow for 32-fold parallelized microscale cultivation of protein secreting Corynebacterium glutamicum in microtiter plates incorporating online monitoring, pH control and feeding was developed and validated. Critical interference of the essential media component protocatechuic acid with pH measurement was revealed, but was effectively resolved by 80% concentration reduction without affecting biological performance. Microfluidic pH control and feeding (pulsed, constant and exponential) were successfully implemented: Whereas pH control improved performance only slightly, feeding revealed a much higher optimization potential. Exponential feeding with µ = 0.1 h-1 resulted in the highest product titers. In contrast, other performance indicators such as biomass-specific or volumetric productivity resulted in different optimal feeding regimes.
Collapse
Affiliation(s)
- Holger Morschett
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roman Jansen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Christian Neuendorf
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Matthias Moch
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
16
|
Wang G, Haringa C, Tang W, Noorman H, Chu J, Zhuang Y, Zhang S. Coupled metabolic-hydrodynamic modeling enabling rational scale-up of industrial bioprocesses. Biotechnol Bioeng 2019; 117:844-867. [PMID: 31814101 DOI: 10.1002/bit.27243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Metabolomics aims to address what and how regulatory mechanisms are coordinated to achieve flux optimality, different metabolic objectives as well as appropriate adaptations to dynamic nutrient availability. Recent decades have witnessed that the integration of metabolomics and fluxomics within the goal of synthetic biology has arrived at generating the desired bioproducts with improved bioconversion efficiency. Absolute metabolite quantification by isotope dilution mass spectrometry represents a functional readout of cellular biochemistry and contributes to the establishment of metabolic (structured) models required in systems metabolic engineering. In industrial practices, population heterogeneity arising from fluctuating nutrient availability frequently leads to performance losses, that is reduced commercial metrics (titer, rate, and yield). Hence, the development of more stable producers and more predictable bioprocesses can benefit from a quantitative understanding of spatial and temporal cell-to-cell heterogeneity within industrial bioprocesses. Quantitative metabolomics analysis and metabolic modeling applied in computational fluid dynamics (CFD)-assisted scale-down simulators that mimic industrial heterogeneity such as fluctuations in nutrients, dissolved gases, and other stresses can procure informative clues for coping with issues during bioprocessing scale-up. In previous studies, only limited insights into the hydrodynamic conditions inside the industrial-scale bioreactor have been obtained, which makes case-by-case scale-up far from straightforward. Tracking the flow paths of cells circulating in large-scale bioreactors is a highly valuable tool for evaluating cellular performance in production tanks. The "lifelines" or "trajectories" of cells in industrial-scale bioreactors can be captured using Euler-Lagrange CFD simulation. This novel methodology can be further coupled with metabolic (structured) models to provide not only a statistical analysis of cell lifelines triggered by the environmental fluctuations but also a global assessment of the metabolic response to heterogeneity inside an industrial bioreactor. For the future, the industrial design should be dependent on the computational framework, and this integration work will allow bioprocess scale-up to the industrial scale with an end in mind.
Collapse
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Cees Haringa
- Transport Phenomena, Chemical Engineering Department, Delft University of Technology, Delft, The Netherlands.,DSM Biotechnology Center, Delft, The Netherlands
| | - Wenjun Tang
- DSM Biotechnology Center, Delft, The Netherlands
| | - Henk Noorman
- DSM Biotechnology Center, Delft, The Netherlands.,Bioprocess Engineering, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Harnessing microbial metabolomics for industrial applications. World J Microbiol Biotechnol 2019; 36:1. [DOI: 10.1007/s11274-019-2775-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
18
|
Grand Research Challenges for Sustainable Industrial Biotechnology. Trends Biotechnol 2019; 37:1042-1050. [DOI: 10.1016/j.tibtech.2019.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/23/2023]
|
19
|
Wang G, Zhao J, Wang X, Wang T, Zhuang Y, Chu J, Zhang S, Noorman HJ. Quantitative metabolomics and metabolic flux analysis reveal impact of altered trehalose metabolism on metabolic phenotypes of Penicillium chrysogenum in aerobic glucose-limited chemostats. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Wehrs M, Tanjore D, Eng T, Lievense J, Pray TR, Mukhopadhyay A. Engineering Robust Production Microbes for Large-Scale Cultivation. Trends Microbiol 2019; 27:524-537. [PMID: 30819548 DOI: 10.1016/j.tim.2019.01.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 11/27/2022]
Abstract
Systems biology and synthetic biology are increasingly used to examine and modulate complex biological systems. As such, many issues arising during scaling-up microbial production processes can be addressed using these approaches. We review differences between laboratory-scale cultures and larger-scale processes to provide a perspective on those strain characteristics that are especially important during scaling. Systems biology has been used to examine a range of microbial systems for their response in bioreactors to fluctuations in nutrients, dissolved gases, and other stresses. Synthetic biology has been used both to assess and modulate strain response, and to engineer strains to improve production. We discuss these approaches and tools in the context of their use in engineering robust microbes for applications in large-scale production.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | | | - Todd R Pray
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Noack S, Baumgart M. Communities of Niche-Optimized Strains: Small-Genome Organism Consortia in Bioproduction. Trends Biotechnol 2019; 37:126-139. [DOI: 10.1016/j.tibtech.2018.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022]
|
22
|
Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, Gladden J, Simmons BA, Petzold CJ, Mukhopadhyay A. Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:41. [PMID: 30858878 PMCID: PMC6391826 DOI: 10.1186/s13068-019-1381-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/18/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Many microbes used for the rapid discovery and development of metabolic pathways have sensitivities to final products and process reagents. Isopentenol (3-methyl-3-buten-1-ol), a biogasoline candidate, has an established heterologous gene pathway but is toxic to several microbial hosts. Reagents used in the pretreatment of plant biomass, such as ionic liquids, also inhibit growth of many host strains. We explored the use of Corynebacterium glutamicum as an alternative host to address these constraints. RESULTS We found C. glutamicum ATCC 13032 to be tolerant to both the final product, isopentenol, as well to three classes of ionic liquids. A heterologous mevalonate-based isopentenol pathway was engineered in C. glutamicum. Targeted proteomics for the heterologous pathway proteins indicated that the 3-hydroxy-3-methylglutaryl-coenzyme A reductase protein, HmgR, is a potential rate-limiting enzyme in this synthetic pathway. Isopentenol titers were improved from undetectable to 1.25 g/L by combining three approaches: media optimization; substitution of an NADH-dependent HmgR homolog from Silicibacter pomeroyi; and development of a C. glutamicum ∆poxB ∆ldhA host chassis. CONCLUSIONS We describe the successful expression of a heterologous mevalonate-based pathway in the Gram-positive industrial microorganism, C. glutamicum, for the production of the biogasoline candidate, isopentenol. We identified critical genetic factors to harness the isopentenol pathway in C. glutamicum. Further media and cultivation optimization enabled isopentenol production from sorghum biomass hydrolysates.
Collapse
Affiliation(s)
- Yusuke Sasaki
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Thomas Eng
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Robin A. Herbert
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Alberto Rodriguez
- Joint BioEnergy Institute, Emeryville, CA USA
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550 USA
| | - John Gladden
- Joint BioEnergy Institute, Emeryville, CA USA
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550 USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
23
|
Hemmerich J, Moch M, Jurischka S, Wiechert W, Freudl R, Oldiges M. Combinatorial impact of Sec signal peptides fromBacillus subtilisand bioprocess conditions on heterologous cutinase secretion byCorynebacterium glutamicum. Biotechnol Bioeng 2018; 116:644-655. [DOI: 10.1002/bit.26873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/11/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Hemmerich
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Matthias Moch
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
| | - Sarah Jurischka
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Wolfgang Wiechert
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachen Germany
| | - Roland Freudl
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Marco Oldiges
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen Germany
| |
Collapse
|
24
|
Koepff J, Sachs CC, Wiechert W, Kohlheyer D, Nöh K, Oldiges M, Grünberger A. Germination and Growth Analysis of Streptomyces lividans at the Single-Cell Level Under Varying Medium Compositions. Front Microbiol 2018; 9:2680. [PMID: 30524383 PMCID: PMC6262040 DOI: 10.3389/fmicb.2018.02680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/19/2018] [Indexed: 01/27/2023] Open
Abstract
Quantitative single-cell cultivation has provided fundamental contributions to our understanding of heterogeneity among industrially used microorganisms. Filamentous growing Streptomyces species are emerging platform organisms for industrial production processes, but their exploitation is still limited due to often reported high batch-to-batch variations and unexpected growth and production differences. Population heterogeneity is suspected to be one responsible factor, which is so far not systematically investigated at the single-cell level. Novel microfluidic single-cell cultivation devices offer promising solutions to investigate these phenomena. In this study, we investigated the germination and growth behavior of Streptomyces lividans TK24 under varying medium compositions on different complexity levels (i.e., mycelial growth, hyphal growth and tip elongation) on single-cell level. Our analysis reveals a remarkable stability within growth and germination of spores and early mycelium development when exposed to constant and defined environments. We show that spores undergo long metabolic adaptation processes of up to > 30 h to adjust to new medium conditions, rather than using a "persister" strategy as a possibility to cope with rapidly changing environments. Due to this uniform behavior, we conclude that S. lividans can be cultivated quite robustly under constant environmental conditions as provided by microfluidic cultivation approaches. Failure and non-reproducible cultivations are thus most likely to be found in less controllable larger-scale cultivation workflows and as a result of environmental gradients within large-scale cultivations.
Collapse
Affiliation(s)
- Joachim Koepff
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Carsten Sachs
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology, RWTH Aachen University – Aachener Verfahrenstechnik, Aachen, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Microscale Bioengineering, RWTH Aachen University – Aachener Verfahrenstechnik, Aachen, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
25
|
Tenhaef N, Brüsseler C, Radek A, Hilmes R, Unrean P, Marienhagen J, Noack S. Production of d-xylonic acid using a non-recombinant Corynebacterium glutamicum strain. BIORESOURCE TECHNOLOGY 2018; 268:332-339. [PMID: 30092487 DOI: 10.1016/j.biortech.2018.07.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 05/22/2023]
Abstract
It was found that Corynebacterium glutamicum ΔiolR devoid of the transcriptional regulator IolR accumulates high amounts of d-xylonate when cultivated in the presence of d-xylose. Detailed analyses of constructed deletion mutants revealed that the putative myo-inositol 2-dehydrogenase IolG also acts as d-xylose dehydrogenase and is mainly responsible for d-xylonate oxidation in this organism. Process development for d-xylonate production was initiated by cultivating C. glutamicum ΔiolR on defined d-xylose/d-glucose mixtures under batch and fed-batch conditions. The resulting yield matched the theoretical maximum of 1 mol mol-1 and high volumetric productivities of up to 4 g L-1 h-1 could be achieved. Subsequently, a novel one-pot sequential hydrolysis and fermentation process based on optimized medium containing hydrolyzed sugarcane bagasse was developed. Cost-efficiency and abundance of second-generation substrates, good performance indicators, and enhanced market access using a non-recombinant strain open the perspective for a commercially viable bioprocess for d-xylonate production in the near future.
Collapse
Affiliation(s)
- Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Christian Brüsseler
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Andreas Radek
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - René Hilmes
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Pornkamol Unrean
- National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany.
| |
Collapse
|
26
|
Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B. Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis. Genes (Basel) 2018; 9:E297. [PMID: 29899275 PMCID: PMC6027265 DOI: 10.3390/genes9060297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023] Open
Abstract
Zero-growth processes are a promising strategy for the production of reduced molecules and depict a steady transition from aerobic to anaerobic conditions. To investigate the adaptation of Corynebacterium glutamicum to altering oxygen availabilities, we conceived a triple-phase fermentation process that describes a gradual reduction of dissolved oxygen with a shift from aerobiosis via microaerobiosis to anaerobiosis. The distinct process phases were clearly bordered by the bacteria’s physiologic response such as reduced growth rate, biomass substrate yield and altered yield of fermentation products. During the process, sequential samples were drawn at six points and analyzed via RNA-sequencing, for metabolite concentrations and for enzyme activities. We found transcriptional alterations of almost 50% (1421 genes) of the entire protein coding genes and observed an upregulation of fermentative pathways, a rearrangement of respiration, and mitigation of the basic cellular mechanisms such as transcription, translation and replication as a transient response related to the installed oxygen dependent process phases. To investigate the regulatory regime, 18 transcriptionally altered (putative) transcriptional regulators were deleted, but none of the deletion strains showed noticeable growth kinetics under an oxygen restricted environment. However, the described transcriptional adaptation of C. glutamicum resolved to varying oxygen availabilities provides a useful basis for future process and strain engineering.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Eugenia Münch
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Jan Müller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
- Institute for Biology-Microbiology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany.
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
27
|
Kawaguchi H, Yoshihara K, Hara KY, Hasunuma T, Ogino C, Kondo A. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose. Microb Cell Fact 2018; 17:76. [PMID: 29773073 PMCID: PMC5956887 DOI: 10.1186/s12934-018-0927-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
Background l-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to d-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as d-glucose, leading to a preferential utilization of d-glucose over pentoses. In order to simultaneously utilize both d-glucose and l-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Results Corynebacterium glutamicum ATCC 31831 utilized d-glucose and l-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized d-glucose over l-arabinose at a high concentration (15 g/L each), although l-arabinose and d-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for d-glucose and l-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of l-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of d-glucose and l-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized d-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of l-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of d-glucose and l-arabinose. Conclusions Metabolome analysis identified potential bottlenecks in d-glucose and l-arabinose metabolism and was then applied to the following rational metabolic engineering. Manipulation of only two genes enabled simultaneous utilization of d-glucose and l-arabinose at the same rate in metabolically engineered C. glutamicum. This is the first report of rational metabolic design and engineering for simultaneous hexose and pentose utilization without inactivating the phosphotransferase system. Electronic supplementary material The online version of this article (10.1186/s12934-018-0927-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kumiko Yoshihara
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kiyotaka Y Hara
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
28
|
Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. Sci Rep 2018; 8:5856. [PMID: 29643457 PMCID: PMC5895699 DOI: 10.1038/s41598-018-24070-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
Sustainable and eco-efficient alternatives for the production of platform chemicals, fuels and chemical building blocks require the development of stable, reusable and recyclable biocatalysts. Here we present a novel concept for the biocatalytic production of 1,5-diaminopentane (DAP, trivial name: cadaverine) using catalytically active inclusion bodies (CatIBs) of the constitutive L-lysine decarboxylase from E. coli (EcLDCc-CatIBs) to process L-lysine-containing culture supernatants from Corynebacterium glutamicum. EcLDCc-CatIBs can easily be produced in E. coli followed by a simple purification protocol yielding up to 43% dry CatIBs per dry cell weight. The stability and recyclability of EcLDCc-CatIBs was demonstrated in (repetitive) batch experiments starting from L-lysine concentrations of 0.1 M and 1 M. EcLDC-CatIBs exhibited great stability under reaction conditions with an estimated half-life of about 54 h. High conversions to DAP of 87-100% were obtained in 30-60 ml batch reactions using approx. 180-300 mg EcLDCc-CatIBs, respectively. This resulted in DAP titres of up to 88.4 g l-1 and space-time yields of up to 660 gDAP l-1 d-1 per gram dry EcLDCc-CatIBs. The new process for DAP production can therefore compete with the currently best fermentative process as described in the literature.
Collapse
|
29
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
30
|
Baumgart M, Unthan S, Kloß R, Radek A, Polen T, Tenhaef N, Müller MF, Küberl A, Siebert D, Brühl N, Marin K, Hans S, Krämer R, Bott M, Kalinowski J, Wiechert W, Seibold G, Frunzke J, Rückert C, Wendisch VF, Noack S. Corynebacterium glutamicum Chassis C1*: Building and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology. ACS Synth Biol 2018; 7:132-144. [PMID: 28803482 DOI: 10.1021/acssynbio.7b00261] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Targeted top-down strategies for genome reduction are considered to have a high potential for providing robust basic strains for synthetic biology and industrial biotechnology. Recently, we created a library of 26 genome-reduced strains of Corynebacterium glutamicum carrying broad deletions in single gene clusters and showing wild-type-like biological fitness. Here, we proceeded with combinatorial deletions of these irrelevant gene clusters in two parallel orders, and the resulting library of 28 strains was characterized under various environmental conditions. The final chassis strain C1* carries a genome reduction of 13.4% (412 deleted genes) and shows wild-type-like growth behavior in defined medium with d-glucose as carbon and energy source. Moreover, C1* proves to be robust against several stresses (including oxygen limitation) and shows long-term growth stability under defined and complex medium conditions. In addition to providing a novel prokaryotic chassis strain, our results comprise a large strain library and a revised genome annotation list, which will be valuable sources for future systemic studies of C. glutamicum.
Collapse
Affiliation(s)
- Meike Baumgart
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Simon Unthan
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ramona Kloß
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andreas Radek
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Tino Polen
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Niklas Tenhaef
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Moritz Fabian Müller
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andreas Küberl
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Daniel Siebert
- Institute
for Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Natalie Brühl
- Institute
of Biochemistry, University of Cologne, 50923 Cologne, Germany
| | - Kay Marin
- Evonik Nutrition & Care GmbH, 45128 Essen, Germany
| | - Stephan Hans
- Evonik Nutrition & Care GmbH, 45128 Essen, Germany
| | - Reinhard Krämer
- Institute
of Biochemistry, University of Cologne, 50923 Cologne, Germany
| | - Michael Bott
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jörn Kalinowski
- Microbial
Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Wiechert
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational
Systems Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Gerd Seibold
- Institute
for Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Julia Frunzke
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Christian Rückert
- Microbial
Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Chair
of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Stephan Noack
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
31
|
Wang G, Zhao J, Haringa C, Tang W, Xia J, Chu J, Zhuang Y, Zhang S, Deshmukh AT, van Gulik W, Heijnen JJ, Noorman HJ. Comparative performance of different scale-down simulators of substrate gradients in Penicillium chrysogenum cultures: the need of a biological systems response analysis. Microb Biotechnol 2018; 11:486-497. [PMID: 29333753 PMCID: PMC5902331 DOI: 10.1111/1751-7915.13046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
In a 54 m3 large‐scale penicillin fermentor, the cells experience substrate gradient cycles at the timescales of global mixing time about 20–40 s. Here, we used an intermittent feeding regime (IFR) and a two‐compartment reactor (TCR) to mimic these substrate gradients at laboratory‐scale continuous cultures. The IFR was applied to simulate substrate dynamics experienced by the cells at full scale at timescales of tens of seconds to minutes (30 s, 3 min and 6 min), while the TCR was designed to simulate substrate gradients at an applied mean residence time (τc) of 6 min. A biological systems analysis of the response of an industrial high‐yielding P. chrysogenum strain has been performed in these continuous cultures. Compared to an undisturbed continuous feeding regime in a single reactor, the penicillin productivity (qPenG) was reduced in all scale‐down simulators. The dynamic metabolomics data indicated that in the IFRs, the cells accumulated high levels of the central metabolites during the feast phase to actively cope with external substrate deprivation during the famine phase. In contrast, in the TCR system, the storage pool (e.g. mannitol and arabitol) constituted a large contribution of carbon supply in the non‐feed compartment. Further, transcript analysis revealed that all scale‐down simulators gave different expression levels of the glucose/hexose transporter genes and the penicillin gene clusters. The results showed that qPenG did not correlate well with exposure to the substrate regimes (excess, limitation and starvation), but there was a clear inverse relation between qPenG and the intracellular glucose level.
Collapse
Affiliation(s)
- Guan Wang
- State key laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, China
| | - Junfei Zhao
- State key laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, China
| | - Cees Haringa
- Transport Phenomena, Chemical Engineering Department, Delft University of Technology, Delft, The Netherlands
| | - Wenjun Tang
- State key laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, China
| | - Jianye Xia
- State key laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, China
| | - Ju Chu
- State key laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, China
| | - Yingping Zhuang
- State key laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, China
| | - Siliang Zhang
- State key laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, China
| | | | - Walter van Gulik
- Cell Systems Engineering, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Joseph J Heijnen
- Cell Systems Engineering, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Henk J Noorman
- DSM Biotechnology Center, Delft, The Netherlands.,Bio Process Engineering, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
32
|
Hemmerich J, Freier L, Wiechert W, von Lieres E, Oldiges M. Generic Protocol for Optimization of Heterologous Protein Production Using Automated Microbioreactor Technology. J Vis Exp 2017. [PMID: 29286407 PMCID: PMC5755569 DOI: 10.3791/56234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A core business in industrial biotechnology using microbial production cell factories is the iterative process of strain engineering and optimization of bioprocess conditions. One important aspect is the improvement of cultivation medium to provide an optimal environment for microbial formation of the product of interest. It is well accepted that the media composition can dramatically influence overall bioprocess performance. Nutrition medium optimization is known to improve recombinant protein production with microbial systems and thus, this is a rewarding step in bioprocess development. However, very often standard media recipes are taken from literature, since tailor-made design of the cultivation medium is a tedious task that demands microbioreactor technology for sufficient cultivation throughput, fast product analytics, as well as support by lab robotics to enable reliability in liquid handling steps. Furthermore, advanced mathematical methods are required for rationally analyzing measurement data and efficiently designing parallel experiments such as to achieve optimal information content. The generic nature of the presented protocol allows for easy adaption to different lab equipment, other expression hosts, and target proteins of interest, as well as further bioprocess parameters. Moreover, other optimization objectives like protein production rate, specific yield, or product quality can be chosen to fit the scope of other optimization studies. The applied Kriging Toolbox (KriKit) is a general tool for Design of Experiments (DOE) that contributes to improved holistic bioprocess optimization. It also supports multi-objective optimization which can be important in optimizing both upstream and downstream processes.
Collapse
Affiliation(s)
- Johannes Hemmerich
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC)
| | - Lars Freier
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC)
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC); Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University
| | - Eric von Lieres
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC);
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC); Institute for Biotechnology, RWTH Aachen University;
| |
Collapse
|
33
|
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M. pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation. J Biotechnol 2017; 259:248-260. [DOI: 10.1016/j.jbiotec.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022]
|
34
|
Delvigne F, Takors R, Mudde R, van Gulik W, Noorman H. Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond. Microb Biotechnol 2017; 10:1267-1274. [PMID: 28805306 PMCID: PMC5609235 DOI: 10.1111/1751-7915.12803] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 11/28/2022] Open
Abstract
Efficient optimization of microbial processes is a critical issue for achieving a number of sustainable development goals, considering the impact of microbial biotechnology in agrofood, environment, biopharmaceutical and chemical industries. Many of these applications require scale-up after proof of concept. However, the behaviour of microbial systems remains unpredictable (at least partially) when shifting from laboratory-scale to industrial conditions. The need for robust microbial systems is thus highly needed in this context, as well as a better understanding of the interactions between fluid mechanics and cell physiology. For that purpose, a full scale-up/down computational framework is already available. This framework links computational fluid dynamics (CFD), metabolic flux analysis and agent-based modelling (ABM) for a better understanding of the cell lifelines in a heterogeneous environment. Ultimately, this framework can be used for the design of scale-down simulators and/or metabolically engineered cells able to cope with environmental fluctuations typically found in large-scale bioreactors. However, this framework still needs some refinements, such as a better integration of gas-liquid flows in CFD, and taking into account intrinsic biological noise in ABM.
Collapse
Affiliation(s)
- Frank Delvigne
- TERRA Research CenterMicrobial Processes and Interactions (MiPI)University of LiègeLiègeBelgium
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Rob Mudde
- Transport Phenomena SectionDepartment of Chemical EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Walter van Gulik
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Henk Noorman
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
- DSM Biotechnology CenterDelftThe Netherlands
| |
Collapse
|
35
|
Simen JD, Löffler M, Jäger G, Schäferhoff K, Freund A, Matthes J, Müller J, Takors R. Transcriptional response of Escherichia coli to ammonia and glucose fluctuations. Microb Biotechnol 2017; 10:858-872. [PMID: 28447391 PMCID: PMC5481515 DOI: 10.1111/1751-7915.12713] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 01/22/2023] Open
Abstract
In large‐scale production processes, metabolic control is typically achieved by limited supply of essential nutrients such as glucose or ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programmes. Previously, we characterized short‐ and long‐term strategies of cells to adapt to glucose fluctuations. Here, we focused on fluctuating ammonia supply while studying a continuously running two‐compartment bioreactor system comprising a stirred tank reactor (STR) and a plug‐flow reactor (PFR). The alarmone ppGpp rapidly accumulated in PFR, initiating considerable transcriptional responses after 70 s. About 400 genes were repeatedly switched on/off when E. coli returned to the STR. E. coli revealed highly diverging long‐term transcriptional responses in ammonia compared to glucose fluctuations. In contrast, the induction of stringent regulation was a common feature of both short‐term responses. Cellular ATP demands for coping with fluctuating ammonia supply were found to increase maintenance by 15%. The identification of genes contributing to the increased ATP demand together with the elucidation of regulatory mechanisms may help to create robust cells and processes for large‐scale application.
Collapse
Affiliation(s)
- Joana Danica Simen
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Löffler
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Günter Jäger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Karin Schäferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jakob Matthes
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Jan Müller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | |
Collapse
|