1
|
Long Y, Xie B, Shen HC, Wen D. Translation Potential and Challenges of In Vitro and Murine Models in Cancer Clinic. Cells 2022; 11:cells11233868. [PMID: 36497126 PMCID: PMC9741314 DOI: 10.3390/cells11233868] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
As one of the leading causes of death from disease, cancer continues to pose a serious threat to human health globally. Despite the development of novel therapeutic regimens and drugs, the long-term survival of cancer patients is still very low, especially for those whose diagnosis is not caught early enough. Meanwhile, our understanding of tumorigenesis is still limited. Suitable research models are essential tools for exploring cancer mechanisms and treatments. Herein we review and compare several widely used in vitro and in vivo murine cancer models, including syngeneic tumor models, genetically engineered mouse models (GEMM), cell line-derived xenografts (CDX), patient-derived xenografts (PDX), conditionally reprogrammed (CR) cells, organoids, and MiniPDX. We will summarize the methodology and feasibility of various models in terms of their advantages and limitations in the application prospects for drug discovery and development and precision medicine.
Collapse
Affiliation(s)
- Yuan Long
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
| | - Bin Xie
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
| | - Hong C. Shen
- China Innovation Center of Roche, Roche R & D Center, Shanghai 201203, China
- Correspondence: (H.C.S.); (D.W.); Tel.: +86-21-68585628 (D.W.)
| | - Danyi Wen
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
- Correspondence: (H.C.S.); (D.W.); Tel.: +86-21-68585628 (D.W.)
| |
Collapse
|
2
|
Groot J, Zhou Y, Marshall E, Cullen P, Carlile T, Lin D, Xu CF, Crisafulli J, Sun C, Casey F, Zhang B, Alves C. Benchmarking and optimization of a high-throughput sequencing based method for transgene sequence variant analysis in biotherapeutic cell line development. Biotechnol J 2021; 16:e2000548. [PMID: 34018310 DOI: 10.1002/biot.202000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
In recent years, High-Throughput Sequencing (HTS) based methods to detect mutations in biotherapeutic transgene products have become a key quality step deployed during the development of manufacturing cell line clones. Previously we reported on a higher throughput, rapid mutation detection method based on amplicon sequencing (targeting transgene RNA) and detailed its implementation to facilitate cell line clone selection. By gaining experience with our assay in a diverse set of cell line development programs, we improved the computational analysis as well as experimental protocols. Here we report on these improvements as well as on a comprehensive benchmarking of our assay. We evaluated assay performance by mixing amplicon samples of a verified mutated antibody clone with a non-mutated antibody clone to generate spike-in mutations from ∼60% down to ∼0.3% frequencies. We subsequently tested the effect of 16 different sample and HTS library preparation protocols on the assay's ability to quantify mutations and on the occurrence of false-positive background error mutations (artifacts). Our evaluation confirmed assay robustness, established a high confidence limit of detection of ∼0.6%, and identified protocols that reduce error levels thereby significantly reducing a source of false positives that bottlenecked the identification of low-level true mutations.
Collapse
Affiliation(s)
- Joost Groot
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA.,Inzen Therapeutics, Cambridge, Massachusetts, USA
| | - Yizhou Zhou
- Protein Development, Biogen, Cambridge, Massachusetts, USA
| | - Eric Marshall
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Patrick Cullen
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Thomas Carlile
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Dongdong Lin
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Chong-Feng Xu
- Analytical Development, Biogen, Cambridge, Massachusetts, USA
| | | | - Chao Sun
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Fergal Casey
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Baohong Zhang
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | | |
Collapse
|
3
|
Langsdorf E, Yu L, Kanevskaia L, Felkner R, Sturner S, McVey D, Khetan A. Retrospective assessment of clonal origin of cell lines. Biotechnol Prog 2021; 37:e3157. [PMID: 33896120 DOI: 10.1002/btpr.3157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 11/08/2022]
Abstract
Cell lines used for the manufacture of recombinant proteins are expected to arise from a single cell as a control strategy to limit variability and ensure consistent protein production. Health authorities require a minimum of two rounds of limiting dilution cloning or its equivalent to meet the requirement of single cell origin. However, many legacy cell lines may not have been generated with process meeting this criteria potentially impeding the path to commercialization. A general monoclonality assessment strategy was developed based on using the site of plasmid integration for a cell's identity. By comparing the identities of subclones from a master cell bank (MCB) to each other and that of the MCB, a probability of monoclonality was established. Two technologies were used for cell identity, Southern blot and a PCR assay based on plasmid-genome junction sequences identified by splinkerette PCR. Southern blot analysis revealed that subclones may have banding patterns that differ from each other and yet indicate monoclonal origin. Splinkerette PCR identifies cellular sequence flanking the point(s) of plasmid integration. The two assays together provide complimentary data for cell identity that enables proper monoclonality assessment and establishes that the three legacy cell lines investigated are all of clonal origin.
Collapse
Affiliation(s)
- Erik Langsdorf
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Le Yu
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Lioudmila Kanevskaia
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Roland Felkner
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Stephen Sturner
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Duncan McVey
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Scientific Best Practices for Primary Sequence Confirmation and Sequence Variant Analysis in the Development of Therapeutic Proteins. J Pharm Sci 2020; 110:619-626. [PMID: 33212163 DOI: 10.1016/j.xphs.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023]
Abstract
In this commentary, we will provide a high-level introduction into LC-MS product characterization methodologies deployed throughout biopharmaceutical development. The ICH guidelines for early and late phase filings is broad so that it is applicable to diverse biotherapeutic products in the clinic and industry pipelines. This commentary is meant to address areas of protein primary sequence confirmation and sequence variant analysis where ambiguity exists in industry on the specific scope of work that is needed to fulfill the general guidance that is given in sections Q5b and Q6b. This commentary highlights the discussion and outcomes of two recent workshops centering on the application of LC-MS to primary structure confirmation and sequence variant analysis (SVA) that were held at the 2018 and 2019 CASSS Practical Applications of Mass Spectrometry in the Biotechnology Industry Symposia in San Francisco, CA and Chicago, IL, respectively. Recommendations from the conferences fall into two distinct but related areas; 1) consolidation of opinions amongst industry stakeholders on the specific definitions of peptide mapping and peptide sequencing for primary structure confirmation and the technologies used for both, as they relate to regulatory expectations and submissions and 2) development of fit-for-purpose strategy to define appropriate assay controls in SVA experiments.
Collapse
|
5
|
Rugbjerg P, Olsson L. The future of self-selecting and stable fermentations. J Ind Microbiol Biotechnol 2020; 47:993-1004. [PMID: 33136197 PMCID: PMC7695646 DOI: 10.1007/s10295-020-02325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
Unfavorable cell heterogeneity is a frequent risk during bioprocess scale-up and characterized by rising frequencies of low-producing cells. Low-producing cells emerge by both non-genetic and genetic variation and will enrich due to their higher specific growth rate during the extended number of cell divisions of large-scale bioproduction. Here, we discuss recent strategies for synthetic stabilization of fermentation populations and argue for their application to make cell factory designs that better suit industrial needs. Genotype-directed strategies leverage DNA-sequencing data to inform strain design. Self-selecting phenotype-directed strategies couple high production with cell proliferation, either by redirected metabolic pathways or synthetic product biosensing to enrich for high-performing cell variants. Evaluating production stability early in new cell factory projects will guide heterogeneity-reducing design choices. As good initial metrics, we propose production half-life from standardized serial-passage stability screens and production load, quantified as production-associated percent-wise growth rate reduction. Incorporating more stable genetic designs will greatly increase scalability of future cell factories through sustaining a high-production phenotype and enabling stable long-term production.
Collapse
Affiliation(s)
- Peter Rugbjerg
- Enduro Genetics ApS, Copenhagen, Denmark. .,Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
A Biobank of Colorectal Cancer Patient-Derived Xenografts. Cancers (Basel) 2020; 12:cancers12092340. [PMID: 32825052 PMCID: PMC7563543 DOI: 10.3390/cancers12092340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a challenging disease, with a high mortality rate and limited effective treatment options, particularly for late-stage disease. Patient-derived xenografts (PDXs) have emerged as an informative, renewable experimental resource to model CRC architecture and biology. Here, we describe the generation of a biobank of CRC PDXs from stage I to stage IV patients. We demonstrate that PDXs within our biobank recapitulate the histopathological and mutation features of the original patient tumor. In addition, we demonstrate the utility of this resource in pre-clinical chemotherapy and targeted treatment studies, highlighting the translational potential of PDX models in the identification of new therapies that will improve the overall survival of CRC patients.
Collapse
|
7
|
Bisht S, Feldmann G. Animal models for modeling pancreatic cancer and novel drug discovery. Expert Opin Drug Discov 2019; 14:127-142. [DOI: 10.1080/17460441.2019.1566319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Savita Bisht
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Lin TJ, Beal KM, Brown PW, DeGruttola HS, Ly M, Wang W, Chu CH, Dufield RL, Casperson GF, Carroll JA, Friese OV, Figueroa B, Marzilli LA, Anderson K, Rouse JC. Evolution of a comprehensive, orthogonal approach to sequence variant analysis for biotherapeutics. MAbs 2018; 11:1-12. [PMID: 30303443 PMCID: PMC6343769 DOI: 10.1080/19420862.2018.1531965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Amino acid sequence variation in protein therapeutics requires close monitoring during cell line and cell culture process development. A cross-functional team of Pfizer colleagues from the Analytical and Bioprocess Development departments worked closely together for over 6 years to formulate and communicate a practical, reliable sequence variant (SV) testing strategy with state-of-the-art techniques that did not necessitate more resources or lengthen project timelines. The final Pfizer SV screening strategy relies on next-generation sequencing (NGS) and amino acid analysis (AAA) as frontline techniques to identify mammalian cell clones with genetic mutations and recognize cell culture process media/feed conditions that induce misincorporations, respectively. Mass spectrometry (MS)-based techniques had previously been used to monitor secreted therapeutic products for SVs, but we found NGS and AAA to be equally informative, faster, less cumbersome screening approaches. MS resources could then be used for other purposes, such as the in-depth characterization of product quality in the final stages of commercial-ready cell line and culture process development. Once an industry-wide challenge, sequence variation is now routinely monitored and controlled at Pfizer (and other biopharmaceutical companies) through increased awareness, dedicated cross-line efforts, smart comprehensive strategies, and advances in instrumentation/software, resulting in even higher product quality standards for biopharmaceutical products.
Collapse
Affiliation(s)
- T Jennifer Lin
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Kathryn M Beal
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Paul W Brown
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | | | - Mellisa Ly
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Wenge Wang
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Chia H Chu
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - Robert L Dufield
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - Gerald F Casperson
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - James A Carroll
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - Olga V Friese
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - Bruno Figueroa
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Lisa A Marzilli
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Karin Anderson
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Jason C Rouse
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| |
Collapse
|
9
|
Scarcelli JJ, Hone M, Beal K, Ortega A, Figueroa B, Starkey JA, Anderson K. Analytical subcloning of a clonal cell line demonstrates cellular heterogeneity that does not impact process consistency or robustness. Biotechnol Prog 2018; 34:602-612. [PMID: 29693321 PMCID: PMC6099511 DOI: 10.1002/btpr.2646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 12/20/2022]
Abstract
During development of a cell line intended to support production of an IgG2 monoclonal antibody, a sequence variant caused by a genetic mutation was identified in the bulk drug substance. Gene copy number analysis together with the level of the observed variant in genomic DNA indicated that the master cell bank was a mixed population of cells; some harboring the variant copy and some mutation free. Since the cell bank had been single‐cell cloned, this variant could be used as a biomarker to demonstrate either that the bank was not derived from a single cell, or that the variant was a result of a post‐cloning genetic event, leading to a mixed population of cells. The sequence variant was only present in a small percentage of subclones, confirming the hypothesis that the cell bank was indeed a mixed population. Interrogation of subclones via Southern blot analysis revealed that almost all subclones had very similar transgene integrant structures, suggesting that the cell bank was likely derived from a single cell, and the cellular event that yielded the sequence variant was a post‐cloning event. Further, there were likely several other post‐cloning events that impacted transgene loci, leading to a population of related, yet genetically distinct cells comprising the cell bank. Despite this, the heterogeneous bank performed consistently in a bioprocess across generational age with comparable product quality. These results experimentally demonstrate the heterogeneity of a cell bank derived from a single cell, and its relationship to process consistency. © 2018 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:602–612, 2018
Collapse
Affiliation(s)
- John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Megan Hone
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Kathryn Beal
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Alejaida Ortega
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Bruno Figueroa
- Culture Process Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Jason A Starkey
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, 63017
| | - Karin Anderson
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| |
Collapse
|