2
|
Kim D, Kwon SJ, Sauve J, Fraser K, Kemp L, Lee I, Nam J, Kim J, Dordick JS. Modular Assembly of Unique Chimeric Lytic Enzymes on a Protein Scaffold Possessing Anti-Staphylococcal Activity. Biomacromolecules 2019; 20:4035-4043. [PMID: 31524374 DOI: 10.1021/acs.biomac.9b01134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lytic enzymes have been considered as potential alternatives to antibiotics. These enzymes, particularly those that target Gram-positive bacteria, consist of modular cell wall-binding and catalytic domains, which can be shuffled with those of other lytic enzymes to produce unnatural chimeric enzymes. In this work, we report the in vitro shuffling of two different modular domains using a protein self-assembly methodology. Catalytic domains (CD) and cell wall-binding domains (BD) from the bacteriocin lysostaphin (Lst) and a putative autolysin from Staphylococcus aureus (SA1), respectively, were genetically site-specifically biotinylated and assembled with streptavidin to generate 23 permuted chimeras. The specific assembly of a CD (3 equiv) and a BD (1 equiv) from Lst and SA1, respectively [CDL-BDS (3:1)], on a streptavidin scaffold yielded high lytic activity against S. aureus (at least 5.6 log reduction), which was higher than that obtained with either native Lst or SA1 alone. Moreover, at 37 °C, the initial rate of cell lysis was over 3-fold higher than that with free Lst, thereby revealing the unique catalytic properties of the chimeric proteins. In vitro self-assembly of functional domains from modular lytic enzymes on a protein scaffold likely expands the repertoire of bactericidal enzymes with improved activities.
Collapse
Affiliation(s)
- Domyoung Kim
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Jessica Sauve
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Keith Fraser
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Leighann Kemp
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Inseon Lee
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jahyun Nam
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| |
Collapse
|
3
|
Kwon SJ, Kim D, Lee I, Nam J, Kim J, Dordick JS. Sensitive multiplex detection of whole bacteria using self-assembled cell binding domain complexes. Anal Chim Acta 2018; 1030:156-165. [PMID: 30032765 DOI: 10.1016/j.aca.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/14/2018] [Accepted: 05/02/2018] [Indexed: 11/29/2022]
Abstract
Detecting bacterial cells at low levels is critical in public health, the food industry and first response. Current processes typically involve laborious cell lysis and genomic DNA extraction to achieve 100-1000 CFU mL-1 levels for detecting gram-positive bacteria. As an alternative to DNA-based methods, cell wall binding domains (CBDs) derived from lysins having a modular structure with an N-terminal catalytic domain and a C-terminal CBD, can be used to detect bacterial pathogens as a result of their exceptionally specific binding to target bacteria with great avidity. We have developed a highly sensitive method for multiplex detection of whole bacterial cells using self-assembled CBD complexes. Self-assembled CBD-SA-reporter complexes were generated using streptavidin (SA), biotin-CBDs, and biotinylated reporters, such as glucose oxidase (GOx) and specific DNA sequences. The simultaneous detection of three test bacteria, Staphylococcus aureus, Bacillus anthracis-Sterne, and Listeria innocua cells in PBS could be accomplished with a 96-well plate-based sandwich method using CBD-SA-GOx complex-coupled spectrophotometric assay to achieve a detection limit of >100 CFU mL-1. To achieve greater detection sensitivity, we used CBD-SA-DNA complexes and qPCR of specific DNA barcodes selectively bound to the surface of target bacterial cells, which resulted in a detection sensitivity as low as 1-10 CFU mL-1 without cross-reactivity. This sensitive multiplex detection of bacterial pathogens using both CBD-SA-GOx and CBD-SA-DNA complexes has the potential to be quickly combined with point-of-care compatible diagnostics for the rapid detection of pathogens in test samples.
Collapse
Affiliation(s)
- Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Domyoung Kim
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jahyun Nam
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
4
|
Kim D, Kwon SJ, Wu X, Sauve J, Lee I, Nam J, Kim J, Dordick JS. Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle-Cell Wall Binding Domain Conjugates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13317-13324. [PMID: 29619821 DOI: 10.1021/acsami.8b00181] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Broad-spectrum antibiotics indiscriminately kill bacteria, removing nonpathogenic microorganisms and leading to evolution of antibiotic resistant strains. Specific antimicrobials that could selectively kill pathogenic bacteria without targeting other bacteria in the natural microbial community or microbiome may be able to address this concern. In this work, we demonstrate that silver nanoparticles, suitably conjugated to a selective cell wall binding domain (CBD), can efficiently target and selectively kill bacteria. As a relevant example, CBDBA from Bacillus anthracis selectively bound to B. anthracis in a mixture with Bacillus subtilis, as well in a mixture with Staphylococcus aureus. This new biologically-assisted hybrid strategy, therefore, has the potential to provide selective decontamination of pathogenic bacteria with minimal impact on normal microflora.
Collapse
Affiliation(s)
- Domyoung Kim
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Xia Wu
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Jessica Sauve
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Inseon Lee
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jahyun Nam
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| |
Collapse
|